• Title/Summary/Keyword: Laser Butt Welding

Search Result 117, Processing Time 0.021 seconds

The Comparison of the Thermal and Mechanical Characteristic in Butt Joint for Ship Structure Thick Plate AH32 Steel by SAW & Hybrid(CO2 Laser+MIG)Welding (조선용 후판 AH32 강에 대한 SAW 및 Hybrid(CO2 Laser+MIG) 맞대기 용접부의 열 및 역학적 특성 비교)

  • Bang, Han-Sur;Oh, Chong-In;Bang, Hee-Seon;Ro, Chan-Seung;Lee, Yoon-Ki;Bong, Hyun-Soo;Lee, Jeong-Soo
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper concentrate on the comparison of the thermal and mechanical characteristics in Butt joint of ship structure AH32 steel by using hybrid welding and conventional SAW. For this purpose, fundamental welding phenomena of hybrid process using $CO_2$ Laser and MIG is investigated by the experiments and characteristics of thermal and welding residual stress distribution of welded joint in SAW and hybrid welding are understood from the result of FE numerical simulation and experimental values. From the result of this study, it is understood that Laser-MIG hybrid welding have high potential, make substantial saving of time and manufacturing cost and may proves its self robust in the butt joining of thick AH32 steel ship structural plate in the near future.

The Low Cycle Fatigue Behavior of Laser Welded Sheet Metal for Different Materials (이종재료 레이저 용접 판재의 저주기 피로 특성)

  • Kim Seog-Hwan;Kwak Dai-Soon;Kim Woong-Chan;Oh Taek-Yul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.627-631
    • /
    • 2005
  • In this study, low fatigue behavior of laser welded sheet metal were investigated. Before welding, the cross section of butt joint was prepared only by fine shearing without milling process. Specimens were same sheet metal and welding condition that using automobile manufacturing company at present. Butt joint of cold rolled sheet metal was welded by $CO_2$ laser. It is used that welding condition such as laser welding speed was 5.5m/sec and laser output power was 5kW for 0.8mm and 1.2mm sheet metal. The laser weldments were machined same or different thickness and same or different material. In order to mechanical properties of around welding zone, hardness test was performed. Hardness of welding bead is about 2 times greater than base material. We performed the low cycle fatigue tests for obtaining fatigue properties about thickness and the weld line direction of specimen. The results of strain controlled low cycle fatigue test indicate that all specimens occur cyclic softening, as indicated by the decrease in stress to reach a prescribed strain.

  • PDF

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF

A Study on Correlationship between the Induced Plasma and Emission Signals for In-process Monitoring in Stainless Steel Welding of Fiber Laser (II) - Properties Changes of the Measured Signals in a Thick Plate Welding - (파이버 레이저의 스테인리스강 용접시 인프로세스 모니터링을 위한 유기 플라즈마와 방사신호간의 상관성 연구(II) - 후판 용접시 측정신호의 특성 변화 -)

  • Lee, Chang-Je;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.70-74
    • /
    • 2014
  • On this study, we researched the in-process monitoring during fiber laser welding as well as on the first paper. On the previous/formal study, we analyzed the change of emission signal on thin plate welding. On this study, however, we analyzed RMS and FFT with emission signals in laser welding on lap joint and butt joint of 8mm-thick 316L stainless steel. As the result, the movement of specific frequency peak was observed according to welding speed changes. Furthermore, frequency peak as a result of FFT on the thick plate welding are much clearer than on the thin plate welding. Therefore, it is expected that the welding parameter changes can be predicted in case of applying FFT to in-process monitoring.

Welding Characteristics of Cold Rolled Carbon Steel utilize CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 냉연강판의 용접특성)

  • Shin B.H.;Yoo Y.T.;Shin H.J.;Ahn D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.17-18
    • /
    • 2006
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1400W of the laser power, 0.8m/min, 0.9m/min of welding speed and $4{\ell}$ in of pressure for shielding gas.

  • PDF

Vision Sensor System for Weld Seam Tracking of I-Butt Joint with Height Variation (높이 변화가 있는 막대기 용접선 추적용 시각센서)

  • Kim Moo-Yeon;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • In this study, a visual sensor system which can detect I-butt weld joint with height variation and includes a seam tracking algorithm was investigated. Three-dimensional position of an object can be acquired by using the method of distance measurement, i.e., an optical trigonometry which results from the spatial relations between the camera, the object and the structured light by a visible laser. Effects of laser intensity and iris number for the image quality as well as object material were investigated for the optical system design. For the image processing, a region of interest is defined from the whole image and a line image of laser is drew by using the gray level difference in the image. From the drew laser line, the weld joint can be recognized in searching the biggest point position calculated from the central difference method. Through a series of welding experiments, a good tracking performance was confirmed under GMA welding.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (II) - Mechanical Properties of laser-welded AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (II) - AZ31B-H24 및 AZ31B-O 레이저 용접부의 기계적 특성 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Magnesium alloy sheet which is commercially available in the market presently is AZ31B, a Mg-Al-Zn three elements alloy. AZ31B is used by being classified into AZ31B-H24 and AZ31B-O depending on temper designation. In this study, AZ31B-H24 and AZ31B-O alloy sheets with 1.25mm thickness were butt-welded using CW Nd:YAG laser. And the effect of materials on mechanical properties was investigated by tensile and hardness tests. As a result of this study, regardless of materials, the butt-welded joint did not show a significant difference in tensile strength and hardness values. However, compared with the basemetal, the AZ31B-O showed more outstanding mechanical properties than AZ31B-H24, and that is because H24 material lost the effect of work hardening during welding.

Butt Weldability for SS400 Using Laser-Arc Hybrid Welding (레이저-아크 하이브리드 용접을 이용한 SS400의 맞대기 용접 특성)

  • Kim, Jong Do;Myoung, Gi Hoon;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.667-672
    • /
    • 2016
  • This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

A Study on a Vision Sensor System for Tracking the I-Butt Weld Joints

  • Kim Jae-Woong;Bae Hee-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1856-1863
    • /
    • 2005
  • In this study, a visual sensor system for weld seam tracking the I-butt weld joints in GMA welding was constructed. The sensor system consists of a CCD camera, a diode laser with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and arc light. In order to obtain the enhanced image, quantitative relationship between laser intensity and iris opening was investigated. Throughout the repeated experiments, the shutter speed was set at 1/1000 second for minimizing the effect of spatters on the image, and therefore the image without the spatter traces could be obtained. Region of interest was defined from the entire image and gray level of the searched laser stripe was compared to that of weld line. The differences between these gray levels lead to spot the position of weld joint using central difference method. The results showed that, as long as weld line is within $\pm15^{o}$ from the longitudinal straight line, the system constructed in this study could track the weld line successfully. Since the processing time is no longer than 0.05 sec, it is expected that the developed method could be adopted to high speed welding such as laser welding.

Weld Quality Monitoring and Seam Tracking in Making of Welded Tube using $CO_2$ Laser ($CO_2$ 레이저를 이용한 용접튜브 제조공정에서의 용접선 추적 및 용접품질 모니터링)

  • Suh, Jeong;Lee, Jae-Hoon;Kim, Jeng-O;Kang, Hee-Shin;Lee, Moon-Yong;Jung, Byung-Hun
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.34-41
    • /
    • 2003
  • Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are studied. The material of tube is 60kg/$\textrm{mm}^2$ grade steel sheet, and the longitudinal butt-joint is shaped by 2 roll bending machine. The tube with a thickness of 1.5mm, diameter of 105.4mm and length of 2000mm is successfully obtained by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. Experimental results show that the developed welding system can be used for the precision seam tracking and the real-time monitoring of weld quality, and the laser welded tube can be used for car body md component after tubular hydroforming.