• Title/Summary/Keyword: Lasco

Search Result 39, Processing Time 0.023 seconds

Origin and formation mechanism of LASCO-C2 post CME blobs observed on 2017 September 10

  • Lee, Jae-Ok;Cho, Kyung-Suk;Lee, Kyoung-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.41.3-41.3
    • /
    • 2019
  • To find out the origin and formation mechanism of LASCO-C2 post-CME blobs, we investigate 2 LASCO-C2 blobs and 35 low corona blobs observed by K-Cor on 2017 September 10 from 17:11 to 18:58 UT. By visual inspection of a post-CME ray and the locations of low corona blobs in K-Cor and LASCO-C2 images with examining the time-height data of all blobs, we find the following results: (1) The post-CME ray structure is well identified in the K-Cor images than LASCO-C2 ones. (2) Low corona blobs can be classified into two groups according to their formation mechanisms: 27 blobs belong to Group 1, generated by the tearing mode instability near the middles of current sheets as described by Furth et al., 1963; Shibata & Tanuma, 2001; Shen et al., 2011, the others belong to Group 2, formed by the tearing mode instability near the tips of current sheets as shown in Figure 5 of Sitnov et al., 2002. (3) Group 1 has low initial appearance heights <1.30 Rs>, broad speed range (38 ~ 945 km/s), and high accelerations <4,272 m/s2 > than Group 2, which has initial appearance heights <1.72 Rs>, speed range (579 ~ 843 km/s), and accelerations <1,413 m/s2 >. (4) among 8 blobs for Group 2, only 2 blobs are temporally and spatially associated with 2 LASCO-C2 ones and their initial observation heights are 1.93 and 1.79 Rs, respectively. Our results firstly demonstrate that LASCO-C2 blobs form the heights from about 1.7 to 2.0 Rs and they are generated by the tearing mode instability near the tips of current sheets.

  • PDF

Testing Capability of CME Eccentricity Parameter

  • Rho, Su-Lyun;Cho, Kyung-Suk;Chang, Heon-Young;Moon, Yong-Jae;Kim, Rok-Soon;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.4-38
    • /
    • 2009
  • Rho et al.(2008) showed that the eccentricity parameter of a CME is an important indicator for forecasting CME geoeffectiveness. In this study we have tested a capability of the eccentricity parameter as an indicator of CME direction. For this work we considered 11 CMEs observed by both SOHO/LASCO and STEREO/SECCHI (2007-2008 from Temmer et al. 2009) coronagraphs. We have estimated earthward direction angles for these CMEs based on two different methods: (1) the eccentricity parameter from a single coronagraph SOHO/LASCO and (2) the triangulation technique using a pair of spacecrafts LASCO/STEREO-A and LASCO/STEREO-B. As a result, we have found that for 7 out of 11 CME events their direction angles are consistent with each other within $20^{\circ}$. This result demonstrates that the earthward direction based on the eccentricity parameter can be a good potential indicator for CME propagation direction.

  • PDF

Comparison of geometrical methods to identify CME 3-D structures

  • Lee, Harim;Moon, Yong-Jae;Na, Hyeonock;Jang, Soojeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.73-73
    • /
    • 2014
  • Several geometrical models (e.g., cone and flux rope models) have been suggested to infer 3-D parameters of CMEs using multi-view observations (STEREO/SECCHI) and single-view observations (SOHO/LASCO). To prepare for when only single view observations are available, we have made a test whether the cone model parameters from single-view observations are consistent with those from multi-view ones. For this test, we select 35 CMEs which are identified as CMEs, whose angular widths are larger than 180 degrees, by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 July when two spacecraft were separated by $90{\pm}10$ degrees. In this study, we compare 3-D parameters of these CMEs from three different methods: (1) a triangulation method using the STEREO/SECCHI and SOHO/LASCO data, (2) a Graduated Cylindrical Shell (GCS) flux rope model using the STEREO/SECCHI data, and (3) an ice cream cone model using the SOHO/LASCO data. The parameters used for comparison are radial velocities, angular widths and source location (angle ${\gamma}$ between the propagation direction and the plan of the sky). We find that the radial velocities and the ${\gamma}$-values from three methods are well correlated with one another (CC > 0.8). However, angular widths from the three methods are somewhat different. The correlation coefficients are relatively not good (CC > 0.4). We also find that the correlation coefficients between the locations from the three methods and the active region locations are larger than 0.9, implying that most of the CMEs are radially ejected.

  • PDF

Comparison of CME mean density based on a full ice-cream cone structure and its corresponding ICME one

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2018
  • For space weather forecast, it is important to determine three-dimensional parameters of coronal mass ejections (CMEs). To estimate three-dimensional parameters of CMEs, we have developed a full ice-cream cone model which is a combination of a symmetrical flat cone and a hemisphere. By applying this model to 12 SOHO/LASCO halo CMEs, we find that three-dimensional parameters from our method are similar to those from other stereoscopic methods. For several geoeffective CME events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. We derive CME mean density as a function of CME height for these CMEs, which are approximately fitted to power-law functions. We find that the ICME mean densities extrapolated from the power law functions, are correlated with their corresponding ICME ones in logarithmic scales.

  • PDF

Mass constraints of coronal mass ejection plasmas observed in EUV and X-ray passbands

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Coronal mass ejection (CME) plasmas have been observed in EUV and X-ray passbands as well as in white light. Mass of CME has been determined using polarized brightness observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board Solar and Heliospheric Observatory (SOHO). Therefore, this mass obtained from the LASCO observation indicates the total CME mass. However, the mass of CME plasma in different temperatures can be determined in EUV and X-ray passbands using observations by SOHO/EIT, STEREO/EUVI, and Hinode/XRT. Prominence/CME plasmas have been observed as absorption or emission features in EUV and X-ray passbands. The absorption features provide a lower limit to cold mass. In addition, the emission features provide an upper limit to the mass of plasmas in temperature ranges of EUV and X-ray. We determine the mass constraints using the emission measure obtained by assuming the prominence/CME structures. This work will address the mass constraints of hot and cold plasmas in CMEs, comparing to total CME mass.

  • PDF

A STATISTICAL STUDY OF STREAMER-ASSOCIATED CORONAL MASS EJECTIONS

  • Moon, Y.J.;Kim, Jin-Sug;Kim, Y.H.;Cho, K.S.;Bong, Su-Chan;Park, Y.D.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.139-145
    • /
    • 2006
  • We have made a comprehensive statistical study on the coronal mass ejections(CMEs) associated with helmet streamers. A total number of 3810 CMEs observed by SOHO/LASCO coronagraph from 1996 to 2000 have been visually inspected. By comparing their LASCO images and running difference images, we picked out streamer-associated CMEs, which are classified into two sub-groups: Class-A events whose morphological shape seen in the LASCO running difference image is quite similar to that of the pre-existing streamer, and Class-B events whose ejections occurred in a part of the streamer. The former type of CME may be caused by the destabilization of the helmet streamer and the latter type of CME may be related to the eruption of a filament underlying the helmet streamer or narrow CMEs such as streamer puffs. We have examined the distributions of CME speed and acceleration for both classes as well as the correlation between their speed and acceleration. The major results from these investigations are as follows. First, about a quarter of all CMEs are streamer-associated CMEs. Second, their mean speed is 413 km $s^{-1}$ for Class-A events and 371 km $s^{-1}$ for Class-B events. And the fraction of the streamer-associated CMEs decreases with speed. Third, the speed-acceleration diagrams show that there are no correlations between two quantities for both classes and the accelerations are nearly symmetric with respect to zero acceleration line. Fourth, their mean angular width are about $60^{\circ}$, which is similar to that of normal CMEs. Fifth, the fraction of streamer-associated CMEs during the solar minimum is a little larger than that during the solar maximum. Our results show that the kinematic characteristics of streamer-associated CMEs, especially Class-A events, are quite similar to those of quiescent filament-associated CMEs.

RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS

  • Lee, Harim;Moon, Y.J.;Nakariakov, V.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2015
  • We present the first observational detection of radial and azimuthal oscillations in full halo coronal mass ejections (HCMEs). We analyze nine HCMEs well-observed by LASCO from Feb 2011 to Jun 2011. Using the LASCO C3 running difference images, we estimated the instantaneous apparent speeds of the HCMEs in different radial directions from the solar disk center. We find that the development of all these HCMEs is accompanied with quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. The amplitudes of the instant speed variations reach about a half of the projected speeds. The amplitudes are found to anti-correlate with the periods and correlate with the HCME speed, indicating the nonlinear nature of the process. The oscillations have a clear azimuthal structure in the heliocentric polar coordinate system. The oscillations in seven events are found to be associated with distinct azimuthal wave modes with the azimuthal wave number m=1 for six events and m=2 for one event. The polarization of the oscillations in these seven HCMEs is broadly consistent with those of their position angles with the mean difference of $42.5^{\circ}$. The oscillations may be connected with natural oscillations of the plasmoids around a dynamical equilibrium, or self-oscillatory processes, e.g. the periodic shedding of Alfvenic vortices. Our results indicate the need for advanced theory of oscillatory processes in CMEs.

  • PDF

Determination of coronal electron density distributions by DH type II radio bursts and CME observations

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Lee, Kyoung-Sun;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2015
  • In this study, we determine coronal electron density distributions by analyzing DH type II radio observations based on the assumption: a DH type II radio burst is generated by the shock formed at a CME leading edge. For this, we consider 11 Wind/WAVES DH type II radio bursts (from 2000 to 2003 and from 2010 to 2012) associated with SOHO/LASCO limb CMEs using the following criteria: (1) the fundamental and second harmonic emission lanes are well identified; (2) its associated CME is clearly identified in the LASCO-C2 or C3 field of view at the time of type II observation. For these events, we determine the lowest frequencies of their fundamental emission lanes and the heights of their leading edges. Coronal electron density distributions are obtained by minimizing the root mean square error between the observed heights of CME leading edges and the heights of DH type II radio bursts from assumed electron density distributions. We find that the estimated coronal electron density distribution ranges from 2.5 to 10.2-fold Saito's coronal electron density models.

  • PDF

Comparison of CME radial velocities from the flux rope model and the ice cream cone model

  • Kim, Tae-Hyeon;Moon, Yong-Jae;Na, Hyeon-Ok
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Coronal Mass Ejections (CMEs) are enormous eruptions of plasma ejected from the Sun into interplanetary space, and mainly responsible for geomagnetic storms and solar energetic particle events. It is very important to infer their direction of propagation, speed and their 3-dimensional configurations in terms of space weather forecast. Two STEREO satellites provide us with 3-dimensional stereoscopic measurements. Using the STEREO observations, we can determine the 3-dimensional structure and radial velocity of the CME. In this study, we applied three different methods to the 2008 April 26 event: (1) Ice cream Cone Model by Xue (2005) using the SOHO/LASCO data, (2) Flux rope model by Thernisien (2009) using the STEREO/SECCHI data, (3) Flux rope model with zero angle using the STEREO/SECCHI data. The last method in which separation angle of flux rope is zero, is similar to the ice cream cone model morphologically. The comparison shows that the radial speeds from three methods are estimated to be about 750km/s and are within ${\pm}120km/s$. We will extend this comparison to other CMEs observed by STEREO and SOHO/LASCO.

  • PDF

Determination of 2D solar wind speed maps from LASCO C3 observations using Fourier motion filter

  • Cho, Il-Hyun;Moon, Yong-Jae;Lee, Jin-Yi;Nakariakov, Valery;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.68-68
    • /
    • 2017
  • Measurements of solar wind speed near the Sun (< 0.1 AU) are important for understanding acceleration mechanism of solar wind as well as space weather predictions, but hard to directly measure them. For the first time, we provide 2D solar wind speed maps in the LASCO field of view using three consecutive days data. By applying the Fourier convolution and inverse Fourier transform, we decompose the 3D intensity data (r, PA, t) into the 4D one (r, PA, t, v). Then, we take the weighted mean along speed to determine the solar wind speeds that gives V(r, PA, t) in every 30 min. The estimated radial speeds are consistent with those given by an artificial flow and plasma blobs. We find that the estimated speeds are moderately correlated with those from slow CMEs and those from IPS observations. A comparison of yearly solar wind speed maps in 2000 and 2009 shows that they have very remarkable differences: azimuthally uniform distribution in 2000 and bi-modal distribution (high speed near the poles and low speed near the equator) in 2009.

  • PDF