• Title/Summary/Keyword: Larval weight

Search Result 222, Processing Time 0.037 seconds

Energy Budgets for the Developmental Stages of Palaemon macrodactylus (Palaemon macrodactylus의 생활사에 따른 에너지 수지)

  • CHIN Pyung;KIM Heung-Yun;SIN Yun-Kyong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.341-358
    • /
    • 1992
  • In order to estimate energy budgets of Palaemon macrodactylus, larvae of the shrimp were reared in the laboratory at constant conditions $(25^{\circ}C: 31-32\%o),$ and then juvenile to adult of the shrimp were reared at $15^{\circ}C\;and\;25^{\circ}C$ in the laboratory. Energy used by the reared shrimps were calculated from estimates of data on feeding, growth, molting, metabolism, nitrogen excretion, and energy content. Juveniles and adults reared in the laboratory, which fed on Artemia nauplii, had an average daily growth rates of 0.079 mm/day at $15^{\circ}C\;and\;of\;0.122mm/day\;at\;25^{\circ}C$. The average growth factor* of P. macrodactylus males and females ranged from $3.2\%$ for adult to $13.2\%$ for juveniles individuals, respectively. Intermolt periods were related to body size of the shrimp and to temperature. Average laboratory growth curves were calculated from data on growth factors and intermolt periods to body size of the shrimp at $15^{\circ}C\;and\;25^{\circ}C$. The calorie contents of the shrimp, their molts, eggs and larvae were determined by biochemical composition and oxygen bomb calorimetry. The average amount of energy used in growth for larvae and juvenile to adult were 4.94 cal and 4.55 cal per dry weight in milligram, respectively. The ammount of oxygen used in metabolism was calculated from size, temperature-specific respiration rate. To convert the ammount of oxygen used in respiration into the equivalent energy lost heat was estimated from the data on chemical composition for the larvae and adult, the values was 4.58 cal/ml $O_2$. The energy content per egg was 0.078 cal. The assimilation efficiency estimated by nitrogen content of food and egested faeces gave $61.5\%$ for the larvae. The efficiencies for juvenile to adult ranged between $79.4\%$ and $90.1\%$ The gross growth efficiencies $(K_1)$ and net growth efficiencies $(K_2)$ of P macrodactylus showed $18.33\%\;and 32.63\%$ for total larval stages, ranged from $21.30\%\;to\;31.04\%\;and\;from\;30.03\%\;to\;39.34\%$ for juvenile to adult, respectively.

  • PDF

STUDIES ON THE PROPAGATION OF ABALONE (전복의 증식에 관한 연구)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.3
    • /
    • pp.177-186
    • /
    • 1970
  • The spawning of the abalone, Haliotis discus hannai, was induced In October 1969 by air ex-position for about 30 minutes. At temperatures of from 14.0 to $18.8^{\circ}C$, the youngest trochophore stage was reached within 22 hours after the egg was laid. The trochophore was transformed into the veliger stage within 34 hours after fertilization. For $7\~9$ days after oviposition the veliger floated in sea water and then settled to the bottom. The peristomal shell was secreted along the outer lip of the aperture of the larval shell, and the first respiratory pore appears at about 110 days after fertilization. The shell attained a length of 0.40 mm in 15 days, 1.39 mm in 49 days, 2.14 mm in 110 days, 5.20 mm in 170 days and 10.00 mm in 228 days respectively. Monthly growth rate of the shell length is expressed by the following equation :$L=0.9981\;e^{0.18659M}$ where L is shell length and M is time in month. The density of floating larvae in the culture tank was about 10 larvae per 100 co. The number of larvae attached to a polyethylene collector ($30\times20\;cm$) ranged from 10 to 600. Mortality of the settled larvae on the polyethylene collector was about $87.0\%$ during 170 days following settlement. The culture of Nauicula sp. was made with rough polyethylene collectors hung at three different depths, namely 5 cm, 45 cm and 85 cm. At each depth the highest cell concentration appeared after $15\~17$ days, and the numbers of cells are shown as follows: $$5\;cm\;34.3\times10^4\;Cells/cm^2$$ $$45\;cm\;27.2\times10^4\;Cells/cm^2$$ $$85\;cm\;26.3\times10^4\;Cells/cm^2$$ At temperatures of from 13.0 to $14.3^{\circ}C$, the distance travelled by the larvae (3.0 mm In shell length) averaged 11.36 mm for a Period of 30 days. Their locomation was relatively active between 6 p.m. and 9 p.m., and $52.2\%$ of them moved during this period. When the larvae (2.0 mm in shell length) were kept in water at $0\;to\;\~1.8^{\circ}C$, they moved 1.15cm between 4 p.m. and 8 p.m. and 0.10 cm between midnight and 8 a.m. The relationships between shell length and body weight of the abalone sampled from three different localities are shown as follows: Dolsan-do $W=0.2479\;L^{2.5721}$ Huksan-do $W=0.1001\;L^{3.1021}$ Pohang $W=0.9632\;L^{2.0611}$

  • PDF