• Title/Summary/Keyword: Larix sibirica

Search Result 2, Processing Time 0.018 seconds

Water Use Efficiency in Five Different Species of One-year-old Seedlings Grown in a Field Nursery in Mongolia

  • Lee, Don-Koo;Park, Yeong-Dae;Batkhuu, Nyam-Osor
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.123-128
    • /
    • 2003
  • This study was conducted to examine the water use efficiency (WUE) in five species of one-year-old seedlings grown in a field nursery in Mongolia. Larix sibirica and Pinus sylvestris are the most dominant coniferous species while Ulmus pumila is an important deciduous species known well-adapted in harsh conditions such as in semi-arid forests and Gobi desert regions. Caragana arborescens (Siberian pea shrub) and Hippophae rhamnoides are N-fixing shrubs in Mongolia. Thirty one-year-old seedlings were sampled from each of the five species (a total of 150 samples) and measured for net photosynthetic rate (Pn) and transpiration rate (E). The Pn and E were used to calculate and compare the WUE of each species. Pn differed significantly among the five species (p < 0.05). However, there was no significant difference in Pn between L. sibirica and H. rhamnoides (p > 0.05). C. arborescens showed the highest Pn whereas U. pumila did the poorest. E differed significantly among the five species (p < 0.05). L. sibirica and U. pumila showed considerably lower E than other species. Thus, WUE values of coniferous species such as L. sibirica and P. sylvestris were significantly greater than deciduous or shrub species such as U. pumila, C. arborescens and H. rhamnoides (p < 0.01). It may result that conifers showed relatively high water use efficiency than deciduous or shrub trees due to their lower transpiration rates, which resulted in morphological and physiological characteristics of their leaves. This may indicate that L. sibirica and P. sylvestris can be widely used for rehabilitation works in Mongolia attributed to their dominant distributions but also their high drought-resistance properties.

  • PDF

Ecological Indicators of Forest Degradation after Forest Fire and Clear-cutting in the Siberian Larch (Larix sibirica) Stand of Mongolia

  • Park, Yeong Dae;Lee, Don Koo;Stanturf, John A.;Woo, Su Young;Zoyo, Damdinjav
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.609-617
    • /
    • 2009
  • This study was conducted to investigate ecological indicators of forest degradation after forest fire and clear-cutting in the Siberian larch (Larix sibirica Ledeb.) stand of Mongolia. The species abundance and biodiversity indices were higher in burned and clear-cut stands than those of reference stand, but boreal understory species, such as Vaccinium vitis-idaea, Pyrola incarnata, Linnea borealis and Maianthemum bifolium, completely disappeared and was replaced by sedge species, such as Carex duriuscula, C. lanceolata, C. pediformis, Poa attenuata and P. pratensis. During the research period, temperature increased by an average of $1.6^{\circ}C$ in burned stand and $1.7^{\circ}C$ in clear-cut stand compared to reference stand, but RH sharply decreased up to 15.7% in clear-cut stand. This result indicates that Larix sibirica stand became warmer and drier after forest fire and clear-cutting, and contributed to the abundance of sedge and grass species in the understory. Moreover, intense occupation of tall sedge grass after forest fire and clear-cutting had a vital role as obstacle on natural regeneration of Larix sibirica. The similarity of species composition between reference and burned stands was higher (73.6%) than between reference and clear-cut stands (63.8%). Soil moisture significantly decreased after forest fire and clear-cutting, and the extent of decrease was more severe in the clear-cut stand. The chemical properties at soil organic layer were significantly affected by forest fire and clear-cutting but not the mineral horizons. Inorganic nitrogen of the forest floor significantly decreased in the clear-cut stand ($1.1{\pm}0.4mg{\cdot}kg^{-1}$) than that of the burned ($4.5{\pm}2.3mg{\cdot}kg^{-1}$) and reference stands ($5.0{\pm}2.3mg{\cdot}kg^{-1}$). Available P of the forest floor significantly increased after fire, whereas it decreased after clear-cutting. These results indicate that existence of boreal understory vegetation, and changes in soil moisture and available P are distinct attributes applicable as ecological indicators for identifying forest degradation in Mongolia.