Kim, Jun-Hyoung;Chae, Chong-Hak;Kang, Shin-Myung;Lee, Joo-Yon;Lee, Gil-Nam;Hwang, Soon-Hee;Kang, Nam-Sook
Bulletin of the Korean Chemical Society
/
v.32
no.4
/
pp.1237-1240
/
2011
In this study, we have developed a ligand-based in-silico prediction model to classify chemical structures into hERG blockers using Bayesian and random forest modeling methods. These models were built based on patch clamp experimental results. The findings presented in this work indicate that Laplacian-modified naive Bayesian classification with diverse selection is useful for predicting hERG inhibitors when a large data set is not obtained.
Communications for Statistical Applications and Methods
/
v.13
no.1
/
pp.151-165
/
2006
It is important to estimate the true misclassification rate of a given classifier when an independent set of test data is not available. Cross-validation and bootstrap are two possible approaches in this case. In related literature bootstrap estimators of the true misclassification rate were asserted to have better performance for small samples than cross-validation estimators. We compare the two estimators empirically when the classification rule is so adaptive to training data that its apparent misclassification rate is close to zero. We confirm that bootstrap estimators have better performance for small samples because of small variance, and we have found a new fact that their bias tends to be significant even for moderate to large samples, in which case cross-validation estimators have better performance with less computation.
International Journal of Advanced Culture Technology
/
v.9
no.3
/
pp.305-314
/
2021
Currently, due to COVID-19, household waste has a lot of impact on the environment due to packaging of food delivery. In this paper, we design and implement Faster-RCNN, SSD, and YOLOv4 models for municipal waste detection and classification. The data set explores two types of plastics, which account for a large proportion of household waste, and the types of aluminum cans. To classify the plastic type and the aluminum can type, 1,083 aluminum can types and 1,003 plastic types were studied. In addition, in order to increase the accuracy, we compare and evaluate the loss value and the accuracy value for the detection of municipal waste classification using Faster-RCNN, SDD, and YoloV4 three models. As a final result of this paper, the average precision value of the SSD model is 99.99%, the average precision value of plastics is 97.65%, and the mAP value is 99.78%, which is the best result.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.20
no.1
/
pp.21-31
/
2002
This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.
Recognition of numeral fields is a very important task for many document automation applications. Conventional methods are based on the two-steps process, segmentation of touching numerals and recognition of the individual numerals. However, due to a large variation of touching types this approach has not produced a robust result. In this paper, we present a new segmentation-free method for recognizing the two touching numerals. In this approach, two touching numerals are regarded as a single pattern coming from 100 classes ('00', '01', '02', ..., '98', '99'). For the test set, we manually extract two touching numerals from the data set of NIST numeral fields. Due to the limitation of conventional neural network in case of large-set classification, we use a modular neural network and Drove its superiority through recognition experimen.
This paper aims at providing valuable insights on Financial Fraud Detection on a mobile money transactional activity. We have predicted and classified the transaction as normal or fraud with a small sample and massive data set using Azure and Spark ML, which are traditional systems and Big Data respectively. Experimenting with sample dataset in Azure, we found that the Decision Forest model is the most accurate to proceed in terms of the recall value. For the massive data set using Spark ML, it is found that the Random Forest classifier algorithm of the classification model proves to be the best algorithm. It is presented that the Spark cluster gets much faster to build and evaluate models as adding more servers to the cluster with the same accuracy, which proves that the large scale data set can be predictable using Big Data platform. Finally, we reached a recall score with 0.73, which implies a satisfying prediction quality in predicting fraudulent transactions.
KIPS Transactions on Software and Data Engineering
/
v.5
no.10
/
pp.483-488
/
2016
In this paper, we propose a prototype-based classification learning by using the nearest-neighbor rule. The nearest-neighbor is applied to segment the class area of all the training data with hyperspheres, and a hypersphere must cover the data from the same class. The radius of a hypersphere is computed by the mid point of the two distances to the farthest same class point and the nearest other class point. And we transform the prototype selection problem into a set covering problem in order to determine the smallest set of prototypes that cover all the training data. The proposed prototype selection method is designed by a greedy algorithm and applicable to process a large-scale training set in parallel. The prediction rule is the nearest-neighbor rule and the new training data is the set of prototypes. In experiments, the generalization performance of the proposed method is superior to existing methods.
Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.
Purpose: This study investigated different band selection methods to classify spectrally similar data - obtained from aerial images of healthy citrus canopies and citrus greening disease (Huanglongbing or HLB) infected canopies - using small differences without unmixing endmember components and therefore without the need for an endmember library. However, large number of hyperspectral bands has high redundancy which had to be reduced through band selection. The objective, therefore, was to first select the best set of bands and then detect citrus Huanglongbing infected canopies using these bands in aerial hyperspectral images. Methods: The forward feature selection algorithm (FFSA) was chosen for band selection. The selected bands were used for identifying HLB infected pixels using various classifiers such as K nearest neighbor (KNN), support vector machine (SVM), naïve Bayesian classifier (NBC), and generalized local discriminant bases (LDB). All bands were also utilized to compare results. Results: It was determined that a few well-chosen bands yielded much better results than when all bands were chosen, and brought the classification results on par with standard hyperspectral classification techniques such as spectral angle mapper (SAM) and mixture tuned matched filtering (MTMF). Median detection accuracies ranged from 66-80%, which showed great potential toward rapid detection of the disease. Conclusions: Among the methods investigated, a support vector machine classifier combined with the forward feature selection algorithm yielded the best results.
This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.