• Title/Summary/Keyword: Large-scaled triaxial tests

Search Result 4, Processing Time 0.022 seconds

Study on the Adaptability of Hyperbolic Constitutive Model for Rubble Stone (사석지반에 대한 쌍곡선 구성모델의 적용성 연구)

  • Hwang, Se-Hwan;Kim, Jong-Soo;Kwon, Oh-Kyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.53-63
    • /
    • 2002
  • Until recently the other attempts except linear elastic analysis using assumed elastic modulus had not been made in order to evaluate the settlement of the rock fill materials in Korea. Especially, it was almost impossible to predict the precise settlement of the breakwater structure made with dumped rubble stone. In this study, 3 sets of large scaled triaxial compression tests for porous basaltic quarry rocks were carried out and numerical simulation of those triaxial compression tests were performed applying non linear elastic model. Two stress-strain behaviors were compared to study the adaptability of hyperbolic constitutive model for the rubble stone. The results showed quite good agreements between the two stress-strain behaviors. Thus, the hyperbolic constitutive model is thought to be alternative approach evaluate the settlements of the loose rock-fill material.

  • PDF

Engineering Characteristics of Crushed Rockfill Material

  • Lee, Young-Huy
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.63-76
    • /
    • 1997
  • To investigate the engineering characteristics of crushed rockfill material, the large-scaled triaxial tests have been carried out, The rpckfill is made from the greywacke, and the 3 parallel gradations with different maximum particle size(dmu=38.1mm, 25.4mm and 19.1mm) were designed for the test. The dimension of the specimen is 300mm in diameter and 600mm in height, and the applied confining stress varied from 5t/$51.6^{\circ}$ to 60t/$51.6^{\circ}$. The test results show that the influence of the maximum particle size on the stress -strain r$51.6^{\circ}\; to\; 40.5^{\circ}$ when the confining stress increases from 5t/$51.6^{\circ}$ to 60t/$51.6^{\circ}$ The hyperbolic parameter values estimated from the test result for rockfill are much different from the recommended values by Duncan et. at(1980) for GW and GP material, especially in the $\phi$ ad K-values.

  • PDF

Shear Strength and One-dimensional Compression Characteristics of Granitic Gneiss Rockfill Dam Material (화강편마암 댐 축조재료의 전단강도 및 일차원 압축특성)

  • Kim Bum-Joo;Kim Yong-Seong;Shin Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.31-42
    • /
    • 2005
  • In this study, a rockfill-dam material was investigated on its shear strength and compressibility by performing large-scaled triaxial and oedometer tests. The rockfill material was compacted at two different compaction levels and sheared in triaxial compression at three different confining stresses. Also, rockfill samples were prepared to have three different grain size distributions but the same dry density. Each sample with a given grain size distribution was then compressed one-dimensionally in a large-scaled oedometer cell with and without soaking. The rockfill samples exhibited slightly different shear behaviors with the varying compaction and confining stress levels. The increase in the compaction level changed the behavior from contractive to dilative. Dilation decreased gradually with increasing confining stress, resulting in reduction in the peak shear strength. The large-scaled oedometer test results showed that particle breakages increased with increasing average particle sizes of the samples. Comparing the samples with different gradations, a relatively well-graded sample exhibited lower compressibility. For saturated samples, slightly higher deformations were observed, compared to dry samples. The values of tangent constrained modulis for the dry samples were larger by about 10 to 20$\%$, on the average, than those for the saturated samples.

A Study on the Characteristics of Alluvial Clay in Yangsan-Mulgum (양산-물금 충적점토의 토질특성에 관한 연구)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.102-111
    • /
    • 1997
  • Experiments both in laboratory and field were performed to compare and analyze the characteristics of alluvial clay. The alluvial clay was sampled in test site in which large-scaled tests for the part of the site are under process to suggest the rational method for alluvial clay and the criterion for ground settlement monitoring system. The followings were observed through the experiments : 1. Natural water content, plastic limit, and liquid limit of alluvial clay composed of highly fine grains were 40~80%, 10~20%, and 30~55%, respectively. The values of these properties were relatively small at the ground surface, while the values showed maximum at G.L.- l0m and gradually decreased below the level. 2. Shear strength of alluvial clay was proportionally increased to the depth. Unconfined and triaxial compressive strengths were 0.2~0.6kgf/$cm^2$ and 0.1~0.3kgf/$cm^2$, respectively. 3. Compression index and secondary compression index showed maximum values at G.L.-l0m and gradually decreased below the level. The value of consolidation coefficient was relatively large at the ground surface, constant with decreasing the depth, and incresed when G.L. was below -20m. 4. Piezocone test appeared that alluvial clay with N value of 2~4 was uniformly distributed with 20~ 30m thickness from the ground surface, sand seam was nonuniformly distributed, and penetration pore pressure was 0.8 ~ 1 times of the hydrostatic pressure. Undrained shear strength and consolidation coefficient were 0.04 ~ 0.76kgf / $cm^2$ and $2.88{\times} 10{^-4}~1.3{\times} 10{^-2} cm^2/s$ respectively.

  • PDF