• Title/Summary/Keyword: Large-scale respirometer

Search Result 1, Processing Time 0.015 seconds

Estimation of the methane generation rate constant using a large-scale respirometer at a landfill site

  • Park, Jin-Kyu;Tameda, Kazuo;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The objective of this study is the evaluation of the performance of a large-scale respirometer (LSR) of 17.7 L in the determination of the methane generation rate constant (k) values. To achieve this objective, a comparison between anaerobic (GB21) and LSR tests was conducted. The data were modeled using a linear function, and the resulting correlation coefficient ($R^2$) of the linear regression is 0.91. This result shows that despite the aerobic conditions, the biodegradability values that were obtained from the LSR test produced results that are similar to those from the GB21 test. In this respect, the LSR test can be an indicator of the anaerobic biodegradability for landfill waste. In addition, the results show the high repeatability of the tests with an average coefficient of variance (CV) that is lower than 10%; furthermore, the CV for the LSR is lower than that of the GB21, which indicates that the LSR-test method could provide a better representation of waste samples. Therefore, the LSR method allows for both the prediction of the long-term biodegradation potential in a shorter length of time and the reduction of the sampling errors that are caused by the heterogeneity of waste samples. The k values are $0.156y^{-1}$ and $0.127y^{-1}$ for the cumulative biogas production (GB21) and the cumulative oxygen uptake for the LSR, respectively.