• Title/Summary/Keyword: Large-scale Analysis Data

Search Result 1,157, Processing Time 0.035 seconds

Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network (개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시)

  • Park, Jung-Hwan;Kim, Yoon-Sik;Chang, Tae-Suk;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change (기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용)

  • Kim, Youngkyu;Son, Minwoo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

Development of Data Warehouse Systems to Support Cost Analysis in the Ship Production (조선산업의 비용분석 데이터 웨어하우스 시스템 개발)

  • Hwang, Sung-Ryong;Kim, Jae-Gyun;Jang, Gil-Sang
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.159-171
    • /
    • 2002
  • Data Warehouses integrate data from multiple heterogeneous information sources and transform them into a multidimensional representation for decision support applications. Data warehousing has emerged as one of the most powerful tools in delivering information to users. Most previous researches have focused on marketing, customer service, financing, and insurance industry. Further, relatively less research has been done on data warehouse systems in the complex manufacturing industry such as ship production, which is characterized complex product structures and production processes. In the ship production, data warehouse systems is a requisite for effective cost analysis because collecting and analysis of diverse and large of cost-related(material/production cost, productivity) data in its operational systems, was becoming increasingly cumbersome and time consuming. This paper proposes architecture of the data warehouse systems to support cost analysis in the ship production. Also, in order to illustrate the usefulness of the proposed architecture, the prototype system is designed and implemented with the object of the enterprise of producing a large-scale ship.

Verification of the Effectiveness of Hydraulic well through Large-scale Embankment Test (대형제방실험을 통한 Hydraulic well의 효용성 검증)

  • Park, Min-Cheol;Kim, Jin-Man;Moon, In-Jong;Jin, Yoon-hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.24-35
    • /
    • 2017
  • This paper reports the results of afield appliance study of the hydraulic well method to prevent embankment seepage, the large-scale embankment experiment and seepage analysis to examine the traits of the seepage pressure. The experimental procedure was focused on the pore pressure after examining the detected value of the pore pressure gage. The inner water levels of hydraulic well were compared with the pore pressure data, which were used to inspect the seepage variations. Two different large-scale experiments were conducted according to the installation points of the hydraulic wells. The decrease in seepage pressure reached a maximum of 37% from the experimental results. The experimental pore pressure results were similar to those of the analyses. In addition, the pore pressure oriented from the water level variations of the hydraulic well showed similar patterns between the experiment and analysis, but if the hydraulic well was deeper, the analyzed water levels were larger than the experimental values.

Principles of Multivariate Data Visualization

  • Huh, Moon Yul;Cha, Woon Ock
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.465-474
    • /
    • 2004
  • Data visualization is the automation process and the discovery process to data sets in an effort to discover underlying information from the data. It provides rich visual depictions of the data. It has distinct advantages over traditional data analysis techniques such as exploring the structure of large scale data set both in the sense of number of observations and the number of variables by allowing great interaction with the data and end-user. We discuss the principles of data visualization and evaluate the characteristics of various tools of visualization according to these principles.

Efficient Parallel Visualization of Large-scale Finite Element Analysis Data in Distributed Parallel Computing Environment (분산 병렬 계산환경에 적합한 초대형 유한요소 해석 결과의 효율적 병렬 가시화)

  • Kim, Chang-Sik;Song, You-Me;Kim, Ki-Ook;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.38-45
    • /
    • 2004
  • In this paper, a parallel visualization algorithm is proposed for efficient visualization of the massive data generated from large-scale parallel finite element analysis through investigating the characteristics of parallel rendering methods. The proposed parallel visualization algorithm is designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis by using the sort-last-sparse approach. In the proposed algorithm, the binary tree communication pattern is utilized to reduce the network communication time in image composition routine. Several benchmarking tests are carried out by using the developed in-house software, and the performance of the proposed algorithm is investigated.

Small Scale Digital Mapping using Airborne Digital Camera Image Map (디지털 항공영상의 도화성과를 이용한 소축척 수치지도 제작)

  • Choi, Seok-Keun;Oh, Eu-Gene
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • This study analyzed the issues and its usefulness of drawing small-scale digital map by using the large-scale digital map which was producted with high-resolution digital aerial photograph which are commonly photographed in recent years. To this end, correlation analysis of the feature categories on the digital map was conducted, and this map was processed by inputting data, organizing, deleting, editing, and supervising feature categories according to the generalization process. As a result, 18 unnecessary feature codes were deleted, and the accuracy of 1/5,000 for the digital map was met. Although the size of the data and the number of feature categories increased, this was proven to be shown due to the excellent description of the digital aerial photograph. Accordingly, it was shown that drawing a small-scale digital map with the large-scale digital map by digital aerial photograph provided excellent description and high-quality information for digital map.

Application of a large-scale ensemble climate simulation database for estimating the extreme rainfall (극한강우량 산정을 위한 대규모 기후 앙상블 모의자료의 적용)

  • Kim, Youngkyu;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.177-189
    • /
    • 2022
  • The purpose of this study is to apply the d4PDF (Data for Policy Decision Making for Future Change) constructed from a large-scale ensemble climate simulation to estimate the probable rainfall with low frequency and high intensity. In addition, this study analyzes the uncertainty caused by the application of the frequency analysis by comparing the probable rainfall estimated using the d4PDF with that estimated using the observed data and frequency analysis at Geunsam, Imsil, Jeonju, and Jangsu stations. The d4PDF data consists of a total of 50 ensembles, and one ensemble provides climate and weather data for 60 years such as rainfall and temperature. Thus, it was possible to collect 3,000 annual maximum daily rainfall for each station. By using these characteristics, this study does not apply the frequency analysis for estimating the probability rainfall, and we estimated the probability rainfall with a return period of 10 to 1000 years by distributing 3,000 rainfall by the magnitude based on a non-parametric approach. Then, the estimated probability rainfall using d4PDF was compared with those estimated using the Gumbel or GEV distribution and the observed rainfall, and the deviation between two probability rainfall was estimated. As a result, this deviation increased as the difference between the return period and the observation period increased. Meanwhile, the d4PDF reasonably suggested the probability rainfall with a low frequency and high intensity by minimizing the uncertainty occurred by applying the frequency analysis and the observed data with the short data period.

Analysis of Impact Between Data Analysis Performance and Database

  • Kyoungju Min;Jeongyun Cho;Manho Jung;Hyangbae Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2023
  • Engineering or humanities data are stored in databases and are often used for search services. While the latest deep-learning technologies, such like BART and BERT, are utilized for data analysis, humanities data still rely on traditional databases. Representative analysis methods include n-gram and lexical statistical extraction. However, when using a database, performance limitation is often imposed on the result calculations. This study presents an experimental process using MariaDB on a PC, which is easily accessible in a laboratory, to analyze the impact of the database on data analysis performance. The findings highlight the fact that the database becomes a bottleneck when analyzing large-scale text data, particularly over hundreds of thousands of records. To address this issue, a method was proposed to provide real-time humanities data analysis web services by leveraging the open source database, with a focus on the Seungjeongwon-Ilgy, one of the largest datasets in the humanities fields.

A Topological Analysis of Large Scale Structure Using the CMASS Sample of SDSS-III

  • Choi, Yun-Young;Kim, Juhan;Kim, Sungsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2013
  • We study the three-dimensional genus topology of large-scale structure using the CMASS Data Release 11 sample of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random-phase initial conditions. The data thus supports the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random-phase initial conditions. Modest deviations in the observed genus from random phase are as expected from the nonlinear evolution of structure. We construct mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample, and the observed genus topology to be consistent with LCDM as simulated by the HR3 mock samples.

  • PDF