• Title/Summary/Keyword: Large-Scale Graphs

Search Result 23, Processing Time 0.024 seconds

A Distributed Vertex Rearrangement Algorithm for Compressing and Mining Big Graphs (대용량 그래프 압축과 마이닝을 위한 그래프 정점 재배치 분산 알고리즘)

  • Park, Namyong;Park, Chiwan;Kang, U
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1131-1143
    • /
    • 2016
  • How can we effectively compress big graphs composed of billions of edges? By concentrating non-zeros in the adjacency matrix through vertex rearrangement, we can compress big graphs more efficiently. Also, we can boost the performance of several graph mining algorithms such as PageRank. SlashBurn is a state-of-the-art vertex rearrangement method. It processes real-world graphs effectively by utilizing the power-law characteristic of the real-world networks. However, the original SlashBurn algorithm displays a noticeable slowdown for large-scale graphs, and cannot be used at all when graphs are too large to fit in a single machine since it is designed to run on a single machine. In this paper, we propose a distributed SlashBurn algorithm to overcome these limitations. Distributed SlashBurn processes big graphs much faster than the original SlashBurn algorithm does. In addition, it scales up well by performing the large-scale vertex rearrangement process in a distributed fashion. In our experiments using real-world big graphs, the proposed distributed SlashBurn algorithm was found to run more than 45 times faster than the single machine counterpart, and process graphs that are 16 times bigger compared to the original method.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

An Automatic and Scalable Application Crawler for Large-Scale Mobile Internet Content Retrieval

  • Huang, Mingyi;Lyu, Yongqiang;Yin, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4856-4872
    • /
    • 2018
  • The mobile internet has grown ubiquitous across the globe with the widespread use of smart devices. However, the designs of modern mobile operating systems and their applications limit content retrieval with mobile applications. The mobile internet is not as accessible as the traditional web, having more man-made restrictions and lacking a unified approach for crawling and content retrieval. In this study, we propose an automatic and scalable mobile application content crawler, which can recognize the interaction paths of mobile applications, representing them as interaction graphs and automatically collecting content according to the graphs in a parallel manner. The crawler was verified by retrieving content from 50 non-game applications from the Google Play Store using the Android platform. The experiment showed the efficiency and scalability potential of our crawler for large-scale mobile internet content retrieval.

Representation and Implementation of Graph Algorithms based on Relational Database (관계형 데이타베이스에 기반한 그래프 알고리즘의 표현과 구현)

  • Park, Hyu-Chan
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.347-357
    • /
    • 2002
  • Graphs have provided a powerful methodology to solve a lot of real-world problems, and therefore there have been many proposals on the graph representations and algorithms. But, because most of them considered only memory-based graphs, there are still difficulties to apply them to large-scale problems. To cope with the difficulties, this paper proposes a graph representation and graph algorithms based on the well-developed relational database theory. Graphs are represented in the form of relations which can be visualized as relational tables. Each vertex and edge of a graph is represented as a tuple in the tables. Graph algorithms are also defined in terms of relational algebraic operations such as projection, selection, and join. They can be implemented with the database language such as SQL. We also developed a library of basic graph operations for the management of graphs and the development of graph applications. This database approach provides an efficient methodology to deal with very large- scale graphs, and the graph library supports the development of graph applications. Furthermore, it has many advantages such as the concurrent graph sharing among users by virtue of the capability of database.

Development of Database Supported Graph Library and Graph Algorithms (데이터베이스에 기반한 그래프 라이브러리 및 그래프 알고리즘 개발)

  • 박휴찬;추인경
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.653-660
    • /
    • 2002
  • This paper proposes a method for storing graphs and defining graph algorithms based on the well-developed relational database. In this method, graphs are represented in the form of relations. Each vertex and edge of a graph is represented as tuples of the table and saved in a database. We developed a library of graph operations for the storage and management of graphs and the development of graph applications. Furthermore, we defined graph algorithms in terms of relational algebraic operations such as projection, selection, and join. They can be implemented with the database language such as SQL. This database approach provides an efficient methodology to deal with very large-scale graphs and to support the development of graph applications.

GPU Based Incremental Connected Component Processing in Dynamic Graphs (동적 그래프에서 GPU 기반의 점진적 연결 요소 처리)

  • Kim, Nam-Young;Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.56-68
    • /
    • 2022
  • Recently, as the demand for real-time processing increases, studies on a dynamic graph that changes over time has been actively done. There is a connected components processing algorithm as one of the algorithms for analyzing dynamic graphs. GPUs are suitable for large-scale graph calculations due to their high memory bandwidth and computational performance. However, when computing the connected components of a dynamic graph using the GPU, frequent data exchange occurs between the CPU and the GPU during real graph processing due to the limited memory of the GPU. The proposed scheme utilizes the Weighted-Quick-Union algorithm to process large-scale graphs on the GPU. It supports fast connected components computation by applying the size to the connected component label. It computes the connected component by determining the parts to be recalculated and minimizing the data to be transmitted to the GPU. In addition, we propose a processing structure in which the GPU and the CPU execute asynchronously to reduce the data transfer time between GPU and CPU. We show the excellence of the proposed scheme through performance evaluation using real dataset.

Semantic-based Mashup Platform for Contents Convergence

  • Yongju Lee;Hongzhou Duan;Yuxiang Sun
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.34-46
    • /
    • 2023
  • A growing number of large scale knowledge graphs raises several issues how knowledge graph data can be organized, discovered, and integrated efficiently. We present a novel semantic-based mashup platform for contents convergence which consists of acquisition, RDF storage, ontology learning, and mashup subsystems. This platform servers a basis for developing other more sophisticated applications required in the area of knowledge big data. Moreover, this paper proposes an entity matching method using graph convolutional network techniques as a preliminary work for automatic classification and discovery on knowledge big data. Using real DBP15K and SRPRS datasets, the performance of our method is compared with some existing entity matching methods. The experimental results show that the proposed method outperforms existing methods due to its ability to increase accuracy and reduce training time.

Conversion of Large RDF Data using Hash-based ID Mapping Tables with MapReduce Jobs (맵리듀스 잡을 사용한 해시 ID 매핑 테이블 기반 대량 RDF 데이터 변환 방법)

  • Kim, InA;Lee, Kyu-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.236-239
    • /
    • 2021
  • With the growth of AI technology, the scale of Knowledge Graphs continues to be expanded. Knowledge Graphs are mainly expressed as RDF representations that consist of connected triples. Many RDF storages compress and transform RDF triples into the condensed IDs. However, if we try to transform a large scale of RDF triples, it occurs the high processing time and memory overhead because it needs to search the large ID mapping table. In this paper, we propose the method of converting RDF triples using Hash-based ID mapping tables with MapReduce, which is the software framework with a parallel, distributed algorithm. Our proposed method not only transforms RDF triples into Integer-based IDs, but also improves the conversion speed and memory overhead. As a result of our experiment with the proposed method for LUBM, the size of the dataset is reduced by about 3.8 times and the conversion time was spent about 106 seconds.

  • PDF

Combining Local and Global Features to Reduce 2-Hop Label Size of Directed Acyclic Graphs

  • Ahn, Jinhyun;Im, Dong-Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.201-209
    • /
    • 2020
  • The graph data structure is popular because it can intuitively represent real-world knowledge. Graph databases have attracted attention in academia and industry because they can be used to maintain graph data and allow users to mine knowledge. Mining reachability relationships between two nodes in a graph, termed reachability query processing, is an important functionality of graph databases. Online traversals, such as the breadth-first and depth-first search, are inefficient in processing reachability queries when dealing with large-scale graphs. Labeling schemes have been proposed to overcome these disadvantages. The state-of-the-art is the 2-hop labeling scheme: each node has in and out labels containing reachable node IDs as integers. Unfortunately, existing 2-hop labeling schemes generate huge 2-hop label sizes because they only consider local features, such as degrees. In this paper, we propose a more efficient 2-hop label size reduction approach. We consider the topological sort index, which is a global feature. A linear combination is suggested for utilizing both local and global features. We conduct experiments over real-world and synthetic directed acyclic graph datasets and show that the proposed approach generates smaller labels than existing approaches.

Efficient Mining of Frequent Subgraph with Connectivity Constraint

  • Moon, Hyun-S.;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.267-271
    • /
    • 2005
  • The goal of data mining is to extract new and useful knowledge from large scale datasets. As the amount of available data grows explosively, it became vitally important to develop faster data mining algorithms for various types of data. Recently, an interest in developing data mining algorithms that operate on graphs has been increased. Especially, mining frequent patterns from structured data such as graphs has been concerned by many research groups. A graph is a highly adaptable representation scheme that used in many domains including chemistry, bioinformatics and physics. For example, the chemical structure of a given substance can be modelled by an undirected labelled graph in which each node corresponds to an atom and each edge corresponds to a chemical bond between atoms. Internet can also be modelled as a directed graph in which each node corresponds to an web site and each edge corresponds to a hypertext link between web sites. Notably in bioinformatics area, various kinds of newly discovered data such as gene regulation networks or protein interaction networks could be modelled as graphs. There have been a number of attempts to find useful knowledge from these graph structured data. One of the most powerful analysis tool for graph structured data is frequent subgraph analysis. Recurring patterns in graph data can provide incomparable insights into that graph data. However, to find recurring subgraphs is extremely expensive in computational side. At the core of the problem, there are two computationally challenging problems. 1) Subgraph isomorphism and 2) Enumeration of subgraphs. Problems related to the former are subgraph isomorphism problem (Is graph A contains graph B?) and graph isomorphism problem(Are two graphs A and B the same or not?). Even these simplified versions of the subgraph mining problem are known to be NP-complete or Polymorphism-complete and no polynomial time algorithm has been existed so far. The later is also a difficult problem. We should generate all of 2$^n$ subgraphs if there is no constraint where n is the number of vertices of the input graph. In order to find frequent subgraphs from larger graph database, it is essential to give appropriate constraint to the subgraphs to find. Most of the current approaches are focus on the frequencies of a subgraph: the higher the frequency of a graph is, the more attentions should be given to that graph. Recently, several algorithms which use level by level approaches to find frequent subgraphs have been developed. Some of the recently emerging applications suggest that other constraints such as connectivity also could be useful in mining subgraphs : more strongly connected parts of a graph are more informative. If we restrict the set of subgraphs to mine to more strongly connected parts, its computational complexity could be decreased significantly. In this paper, we present an efficient algorithm to mine frequent subgraphs that are more strongly connected. Experimental study shows that the algorithm is scaling to larger graphs which have more than ten thousand vertices.

  • PDF