• Title/Summary/Keyword: Large vertical pipes

Search Result 17, Processing Time 0.024 seconds

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Design of Mobile Adaptation/Sensing Robot for Vertical Passage in Narrow Space (협소구역 수직 주행을 위한 지형 적응/인지 이동 로봇의 설계)

  • Kim, Tae-Hyun;Yang, Hyun-Seok;Park, No-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1173-1178
    • /
    • 2007
  • The robot for narrow space is used in searching, investigating or cleaning. Up to now variety of researches on in-pipe robots have been introduced. However it is still hard to overcome vertical or curved passage. In most cases of narrow space robots are able to travel just aimed diameter which was selected when those are developed. Also, a large percentage of robots are not able to detect the configuration of pipe or circumstance. In this paper we present a robot called PAROYSⅡ for narrow space with vertical and curved passage. This proposed robot is not affected at all to variance of pipes, vertical or horizontal passages, curved pipes, projecting parts and parallel planes. In addition to that, it will perceive the internal configuration of pipe and terrain, which will be not only available to control navigating scheme by itself, but also mappable about the passage which the robot traveled. Core points in the design and structure are introduced and preliminary verification is given.

  • PDF

Case Study on the Vertical Capacity of the Repaired Large Diameter Rock-Socketed Stool Pipe Pile (보수된 대구경 암반 소켈강관말뚝의 연직지지력에 관한 사례연구)

  • 최용규;김승종;김병희;이광욱;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.185-192
    • /
    • 1999
  • It had found that, as a result of cross-hole tonic logging test, concrete was not filled partially within the bottom 2.0 m of the large diameter (Ø= 2,500mm) rock socketed pile, MP20-P11(socket diameter (Ø= 2,200mm), which was a pile among piles group supporting a pier of Kwangan Grand Bridge. The pile was repaired by the combined cement grout injected through the pipes for the cross-hole sonic logging test and the bore holes for core samples. A month after the cement grouting, repairing was checked by coring and cross-hole sonic logging then 3 times of grouting and 2 times of coring were, in turns, peformed, then repairing was completed successfully. The vertical compressive capacity of the repaired large diameter socketed pile was evaluated by several formulas and software ROCKET, and was more conservative than design load (1,882 ton) of MP20-P11. It is expected that, in the case of the battered socketed piles, it could be more reasonable to analyze the behaviors of a battered pile using 3-D model. A 3-D analysis will be peformed in the future study.

  • PDF

Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel

  • Saengchantr, Dhanaj;Srisatit, Somyot;Chankow, Nares
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.800-806
    • /
    • 2019
  • This paper presents a laboratory experiment on data acquisition technique that applied to the gamma radiation scanning coupled with computed tomography (CT) technique for inspection of broken nozzle inside the vertical vessel. The acquisition technique was developed to inspect a large diameter vessel when suspicious problem location is not easily accessed. This technique allows the installation of gamma radiation source (Cesium 137, Cs-137), and detectors (Sodium Iodine. NaI(Tl)) from the accessible location to the required location and performs the scanning by designed pattern. To demonstrate the designed technique, top opened tank which installed with six cut steel pipes diameter of 76.2 mm (3") at a certain position was selected. They were assumed to be a gas riser pipes inside the vessel. Three studied cases were performed, (a) projection of well installed six pipes, (b) projection of one out of six broken pipe and (c) one of nozzle was assumed to be failure and fell down until one out of six pipes was broken and obstructed by nozzle. Results clearly indicated the capability of developed technique to distinguish between normal situation case and abnormal situation cases.

Strain Characteristics of Underground Flexible Pipes Subject to Cyclic Vehicle Load (차량 반복하중에 의한 지중연성관의 거동특성)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Kim, Dae-Hong;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.730-737
    • /
    • 2004
  • In this paper, in order to examine cyclic hehavior characteristics and safety of underground flexible pipes for electric cables subject to cyclic vehicle load, FEM analysis and cyclic soil box test were carried out. As results of the test, it was revealed that the vertical displacement of the test was larger than that of FEM analysis because thermal effect arising from power cables made reduction of rigidity of the pipe so that large deformation of the pipe induced by the heat occured. Moreover, it was shown that the final vertical displacement under about 0.4 million times of the cyclic load test was not satisfied with elastic allowable displacement of the pipe, and long term stability of the pipe was not stable since behavior characteristics of the pipe exists plastic strain range pasted clastic strain range.

  • PDF

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

Development of a Robotic System for Searching Human Victims in Disasters (재난 인명 탐색을 위한 로봇 시스템 개발)

  • Kang, Jong-Kyu;Lee, Geun-Hyung;Lee, Sung-Uk;Seo, Yong-Chil;Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seung-Ho;Jeong, Kyung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.114-120
    • /
    • 2007
  • This paper introduces a mobile robotic system being developed for urban search and rescue. In order to search human victims in narrow spaces, we developed two types of serially linked mobile robots, named KAEROT-Centipede and KAEROT-SnakeTV1, that can climb over large vertical steps or travel inside narrow vertical pipes. To send such mobile robots to the disaster areas coping with large obstacles, we also developed a assistant mobile robot, named KAEROT-QuadTrack, that has 4 articulated track modules. This paper describes the mechanical structure and control architecture of the serially linked mobile robots and the supporting configuration for torque reduction of the assistant mobile robot during spinning motion that usually requires large driving torque. The experimental results show that such robotic systems have good mobility over the various terrains in disaster areas.

An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

A Study on Lifting Characteristics of Air-Lift Pump (공기양정(Air-Lift)펌프의 양수특성에 관한 연구)

  • Kim, Dong-Kyun;Lee, Cheol-Jae;Bae, Suk-Tae;Cho, Dae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.14-21
    • /
    • 1999
  • As an effective means to convey crushed materials from seabed to onboard ship and to raise hazardous or abrasive liquids, air-lift pump provides a reliable mechanism due to its simple configuration and easy-to-operate principle. The present study is focused on investigation of related performance by the analysis program based on the gas-liquid two-phase flow in circular pipes. The program covers pump operating in isothermal and vertical two-phase flow with Newtonian liquids. It is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates. The comparison between riser performance of the conveyed liquid flow rate calculated by the computer program and measured data with large scale air lift pump system constructed in 200 meter depth vertical tank reveals similar distribution.

  • PDF