• Title/Summary/Keyword: Large screen smartphones

Search Result 4, Processing Time 0.016 seconds

Validating one-handed interaction modes for supporting touch dead-zone in large screen smartphones (대화면 스마트폰의 한 손 조작 시 터치 사각영역 지원 인터랙션의 유용성)

  • Park, Minji;Kim, Huhn
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • The purpose of this study is to evaluate the effectiveness of one-handed interaction modes for supporting the dead zone that users must be difficulty in performing the touch manipulation with only one hand. For the purpose, this study analyzed two existing one-handed modes in iPhone and Android smartphones, and proposed and implemented two additional one-handed modes. In order to investigate effectiveness of the one-handed modes, we performed the experiment that compared normal touch mode with the four one-handed modes. Experimental results showed that all one-handed modes required more time than normal touch mode because of the time requiring in both mode change and recognition. However, the participants had difficulty in manipulating continuous touches at dead zone area with only normal touch. Moreover, the subjective satisfaction was high in one-handed modes thanks to touch convenience and smooth transition effects in mode change. In special, the one-handed mode at iPhone was the most effective out of the tested modes.

VNC-Based Screen Sharing System for Android Smart Devices (VNC 기반의 안드로이드 스마트 기기 화면 공유 시스템)

  • Park, Jong-Eun;Lee, You-Dong;Lee, Hong-Chang;Lee, Myung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.522-532
    • /
    • 2012
  • Smartphones and smartpads have a lot of advantages such as high convenience and portability. Also, they can effectively manage enormous amounts of information based on their high performance and plentiful applications. As such devices have been frequently used, many users manage various types of information using the devices. Recently, during conferences or seminars, smart device users often try to utilize stored resources on their devices and present them visually. Unfortunately, since smart devices have small displays, there is an essential difficulty in visual sharing of information. In this paper, we propose a method which integrates screens of several android smart devices and supports sharing of the integrated screen through a large display, presenting a screen sharing system for android smart devices. The developed system integrates display screens of several smart devices into a screen and shows the integrated screen through a large display connected to a desktop computer. In addition, to support the effective sharing of screens, the system provides functions for adjusting the number and the size of screens on a large display. The functions are controlled on a smart device and/or a desktop computer.

The Implementation of Stmart Phone Edition based on Embedded Linux (임베디드 리눅스 기반의 스마트폰 에디션 구현)

  • Kim Do-Hyung;Yun Min-Hong;Kim Sun-Ja;Lee Cheol-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.7 s.97
    • /
    • pp.597-604
    • /
    • 2005
  • The paper describes implementation of smartphone edition based on embedded Linux, which is composed of smartphone middleware and basic applications. Existing smartphone platforms entails loyalty expenses and has difficulties on customization due to the closed policy of their source codes. Although GPE - based on embedded Linux has solved the loyalty issues, other problems are remained unsolved. Since GPE has been designed for relatively large PDA-level devices, applications are generally inoperable under the condition of small LCD size and input methods without touch-screen; the condition is typical limitations of the smartphones. In the implemented smartphone edition of the paper no loyalty is required, because the smartphone edition is based on embedded Linux. It also supports keypad-only operating functionality such as moving between folders or running applications with operations. Besides, it provides more user-friendly environment to use the smartphone editionscreen interfaces and indicatorsto those of the regular cellular phones.

Evolution of spatial light modulator for high-definition digital holography

  • Choi, Ji Hun;Pi, Jae-Eun;Hwang, Chi-Young;Yang, Jong-Heon;Kim, Yong-Hae;Kim, Gi Heon;Kim, Hee-Ok;Choi, Kyunghee;Kim, Jinwoong;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Since the late 20th century, there has been rapid development in the display industry. Only 30 years ago, we used big cathode ray tube displays with poor resolution, but now most people use televisions or smartphones with very high-quality displays. People now want images that are more realistic, beyond the two-dimensional images that exist on the flat screen, and digital holography-one of the next-generation displaysis expected to meet that need. The most important parameter that determines the performance of a digital hologram is the pixel pitch. The smaller the pixel pitch, the higher the level of hologram implementation possible. In this study, we fabricated the world-smallest $3-{\mu}m$-pixel-pitch holographic backplane based on the spatial light modulator technology. This panel could display images with a viewing angle of more than $10^{\circ}$. Furthermore, a comparative study was conducted on the fabrication processes and the corresponding holographic results from the large to the small pixel-pitch panels.