• Title/Summary/Keyword: Large rotation

Search Result 587, Processing Time 0.025 seconds

A LONGITUDINAL STUDY ON THREE FACIAL GROWTH PATTERNS IN KOREANS WITH NORMAL OCCLUSION (정상교합자의 3가지 안면골 성장양상에 관한 누년적 연구)

  • Park, Krung-Duk;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.273-286
    • /
    • 1995
  • The purpose of this study was to compare the difference of the growth aspects in three facial growth patterns. The biennial serial cephalometric radiographs of 33 samples(19males, 14females) with normal occlusion from 8.5 years to 18.5 yews of age were used in this study. The facial growth patterrn was categorized in 3 types(Drop type, Neutral type, Forward type) by the total amounts of the Y-axis which changed from 8.5 years to 18.5 years of age. The growth change of the craniofacial area during 10 years in each growth type was analyzed and was compared among the 3 growth types. The results of this study might be summarized as follows. 1. The samples that were classified by total change of the Y-axis during this study period were distributed to 52% of the neutral type, 27% of the forward type, 21% of the drop type. 2. The anterior growth of the maxilla to the cranial base(N per A) showed larger in the forward type than in other 2 types(p<0.05). 3. The palatal plane to the FH plane showed more anterior-superior inclination in the forward type with age during this study period. 4. The anterior growth of the mandible to the cranial base(N per Pog) appeared large in rank order, of largest the forward type, second the neutral type, and third the drop type(p<0.05). 5. During this study period the mandibular plane(SN/MN,FMA) showed more counterclockwise rotation in the forward type than in the drop type(p<0.05), and this tendency was stronger in males than in females(p<0.05). 6. The growth of the mandibular corpus length(Go-Me) showed smaller in the drop type than in the other 2 types(p<0.05). 7. In the forward type and the neutral type, the anterior growth of the mandible was larger than that of the maxilla(p<0.05). 8. In the craniofacial growth distances and angulations turned out to be somewhat variable, but the vertical proportion had a strong tendency whose original relation was maintained consistently during this study period. 9. Through these analyzed data, the profilograms on each growth type were constructed to evaluate individual growth pattern in the orthodontic diagnosis.

  • PDF

A Study on Relationship between Physical Elements and Tennis/Golf Elbow

  • Choi, Jungmin;Park, Jungwoo;Kim, Hyunseung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • Objective: The purpose of this research was to assess the agreement between job physical risk factor analysis by ergonomists using ergonomic methods and physical examinations made by occupational physicians on the presence of musculoskeletal disorders of the upper extremities. Background: Ergonomics is the systematic application of principles concerned with the design of devices and working conditions for enhancing human capabilities and optimizing working and living conditions. Proper ergonomic design is necessary to prevent injuries and physical and emotional stress. The major types of ergonomic injuries and incidents are cumulative trauma disorders (CTDs), acute strains, sprains, and system failures. Minimization of use of excessive force and awkward postures can help to prevent such injuries Method: Initial data were collected as part of a larger study by the University of Utah Ergonomics and Safety program field data collection teams and medical data collection teams from the Rocky Mountain Center for Occupational and Environmental Health (RMCOEH). Subjects included 173 male and female workers, 83 at Beehive Clothing (a clothing plant), 74 at Autoliv (a plant making air bags for vehicles), and 16 at Deseret Meat (a meat-processing plant). Posture and effort levels were analyzed using a software program developed at the University of Utah (Utah Ergonomic Analysis Tool). The Ergonomic Epicondylitis Model (EEM) was developed to assess the risk of epicondylitis from observable job physical factors. The model considers five job risk factors: (1) intensity of exertion, (2) forearm rotation, (3) wrist posture, (4) elbow compression, and (5) speed of work. Qualitative ratings of these physical factors were determined during video analysis. Personal variables were also investigated to study their relationship with epicondylitis. Logistic regression models were used to determine the association between risk factors and symptoms of epicondyle pain. Results: Results of this study indicate that gender, smoking status, and BMI do have an effect on the risk of epicondylitis but there is not a statistically significant relationship between EEM and epicondylitis. Conclusion: This research studied the relationship between an Ergonomic Epicondylitis Model (EEM) and the occurrence of epicondylitis. The model was not predictive for epicondylitis. However, it is clear that epicondylitis was associated with some individual risk factors such as smoking status, gender, and BMI. Based on the results, future research may discover risk factors that seem to increase the risk of epicondylitis. Application: Although this research used a combination of questionnaire, ergonomic job analysis, and medical job analysis to specifically verify risk factors related to epicondylitis, there are limitations. This research did not have a very large sample size because only 173 subjects were available for this study. Also, it was conducted in only 3 facilities, a plant making air bags for vehicles, a meat-processing plant, and a clothing plant in Utah. If working conditions in other kinds of facilities are considered, results may improve. Therefore, future research should perform analysis with additional subjects in different kinds of facilities. Repetition and duration of a task were not considered as risk factors in this research. These two factors could be associated with epicondylitis so it could be important to include these factors in future research. Psychosocial data and workplace conditions (e.g., low temperature) were also noted during data collection, and could be used to further study the prevalence of epicondylitis. Univariate analysis methods could be used for each variable of EEM. This research was performed using multivariate analysis. Therefore, it was difficult to recognize the different effect of each variable. Basically, the difference between univariate and multivariate analysis is that univariate analysis deals with one predictor variable at a time, whereas multivariate analysis deals with multiple predictor variables combined in a predetermined manner. The univariate analysis could show how each variable is associated with epicondyle pain. This may allow more appropriate weighting factors to be determined and therefore improve the performance of the EEM.

Motion Reduction Activities in Patients undergoing Myocardial Perfusion SPECT with the Discovery NM 530c(D530c) (Discovery NM 530c(D530c)에서 촬영한 심근관류 SPECT 환자의 움직임 감소활동을 위한 연구)

  • Lee, Dong Hun;Choi, Woo Jun;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.80-85
    • /
    • 2017
  • Purpose The D530c have cadmium zinc telluride(CZT) detectors that are arranged focus on the heart. This structural characteristic allows for quicker imaging without rotation, but this is sensitive to patient movement and can affect the test results. The aim of this study is to optimize the image quality by reducing patient movement during the examination. Materials and Methods We analyzed the patients' movements, and performed various activities such as provided patient education about correct breathing techniques and avoiding patient movements, and created breathing correction tools to minimize patient movement during exam. The 70 patients who underwent myocardial perfusion SPECT with D530c in November 2016 were categorized as the group before the corrective steps. Another 70 patients who underwent the procedure with D530c from February 14, 2017 to February 21, 2017 were categorized as the improvement group. Images acquired during stress and at rest were compared and analyzed by measuring the durations of heart movements over certain distances (4 mm, 8 mm, 12 mm, or more) noted on the x-, y-, and zaxes. Results After the activities, the durations of heart movements decreased in the images acquired both under stress and at rest. In particular, there were no large motions greater than 12 mm recorded in the stress images after the improvement. There was a significant difference (p<0.005) in the 4-mm and 8-mm fluctuations on the X-axis and the 8-mm fluctuations on the Z axis in the stress images, but there was no significant difference (p>0.005) in the other stress and rest intervals. Conclusion The decrease in the time of motion occurrence due to the 4 mm fluctuation distance that can occur through breathing can be understood as a result of the breathing being corrected through training and motion prevention tools. It is expected that the image quality will be improved by reducing the occurrence time according to the variation distance of 8 mm or 12 mm, which is expected as the actual movement of the patient other than the breathing.

  • PDF

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

First Principles Calculations on Magnetism of CrPt3(001) Thin Films (CrPt3(001) 박막의 자성: 제일원리계산)

  • Jeong, Tae Sung;Jekal, Soyoung;Rhim, S.H.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

The Historical Geography of Land-Use and Agriculture Along the Lower Nam-River Floodplains (남강 하류 범람원의 토지이용과 농업형태 변화에 관한 연구)

  • Lee, Jeon;Son, Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.31-47
    • /
    • 1998
  • This paper deals with the historical geography of land-use and agriculture along the Lower Nam-River floodplains. The reclamation process of the river floodplains, the cultivation methods on the reclaimed lands, and the land-use patterns and processes are investigated. The Nam River, one of the major tributaries of the Nakdong River, flows through the boundary between Ham-An and Eu-Ryong Guns. Larger floodplains are located in Ham-An Gun. The floodplains of Ham-An Gun have been surveyed intensively in this study. In South Korea, the alluvial plains, mostly located along the river valleys, have been reclaimed to provide fertile agricultural lands. Those along the upper river valleys were reclaimed before those along the lower river valleys. The flood-plains of Han-An Gun were reclaimed to be the largest agricultural lands of the Gun. The natural levees along the Lower Nam-River Valley were identified before the reclamation processes but now hardly identified. Relatively larger floodplains are located along the tributary streams of the Nam River. Often there are low-lying back swamps between the natural levees and the hills/mountains that rise above the floodplains. The back swamps, called 'natural bog lands' in this region, have been reduced in size and in number through reclamation for the purpose of agricultural and industrial land-uses. Now about ten 'natural bog lands' are found in the Ham-An floodplains, and some of them are being reclaimed for the industrial land-use. This study suggests the emergent need of conservation for the remaining 'natural bog lands' in terms of ecology. Seven agricultural fields of large size, originated from the Nam-River floodplains, are identified in this study: Kun(큰들), Chung-Am(정암들), Chang-chi(장지들), Baek-San(백산들), Ha-Ki(하기들), Gu-Hae(구혜들), and Chang-Po(장포들) fields. The Kun field was reclaimed during the Japanese control and the Gu-Hae, in the 1950s. All of those except the above two fields were reclaimed after the mid-1960s. The Nam-River Dam in Chinju, completed in 1969, contributed the reclamation processes along the Lower Nam-River floodplains. The rice acreage of the region has been reduced slowly since 1970 but the rice production of the region has been relatively stable (Table 4). Rice culture had been the most important agriculture on the reclaimed lands for decades before the greenhouse vegetable cultivation became more important in the 1980s. Among the vegetables cultivated in the greenhouse, the watermelon is the dominantly leading one. Watermelons are usually harvested two or three times in a year though it is possible to harvest four times in one year. The rotation of watermelons and rice is common in the region. It is known the physical conditions of the Nam-River floodplains in Ham-An Gun is the most suitable for watermelon cultivation in South Korea.

  • PDF