• 제목/요약/키워드: Large molecular weight

검색결과 231건 처리시간 0.021초

NMR Study of larger proteins using isotope labeling

  • Park, Sung Jean
    • 한국자기공명학회논문지
    • /
    • 제18권2호
    • /
    • pp.47-51
    • /
    • 2014
  • Larger proteins (above molecular weight 50 kDa) usually show slow motional tumbling in solution, which facilitates the decay of NMR signal, resulting in poor signal-to-noise. In the past twenty years, researchers have tried to overcome this problem with higher molecular weight by improvement of hardware (higher magnetic field and cryoprobe), optimization of pulse sequences for lager molecules, and development of isotope-labeling techniques. Actually, GroEL/ES complex (${\approx}$ 900 kDa) was successfully studied using combination of above techniques. Among the techniques used in large molecular studies, the impact of isotope-labeling for large molecules study is summarized and discussed here.

Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study

  • Yoo, Choong-Do;Kim, Soon-Chul;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1554-1560
    • /
    • 2008
  • The probe diffusion and friction constants of methyl yellow (MY) in liquid n-alkanes of increasing chain length were calculated by equilibrium molecular dynamics (MD) simulations at temperatures of 318, 418, 518 and 618 K. Lennard-Jones particles with masses of 225 and 114 g/mol are modeled for MY. We observed that the diffusion constant of the probe molecule follows a power law dependence on the molecular weight of nalkanes, DMY${\sim}M^{-\gamma}$ well. As the molecular weight of n-alkanes increases, the exponent $\gamma$ shows sharp transitions near n-dotriacontane ($C_{32}$) for the large probe molecule (MY2) at low temperatures of 318 and 418 K. For the small probe molecule (MY1) $D_{MY1}$ in $C_{12}$ to C80 at all the temperatures are always larger than Dself of n-alkanes and longer chain n-alkanes offer a reduced friction relative to the shorter chain n-alkanes, but this reduction in the microscopic friction for MY1 is not large enough to cause a transition in the power law exponent in the log-log plot of DMY1 vs M of n-alkane. For the large probe molecule (MY2) at high temperatures, the situation is very similar to that for MY1. At low temperatures and at low molecular weights of n-alkanes, $D_{MY2}$ are smaller than $D_{self}$ of n-alkanes due to the relatively large molecular size of MY2, and MY2 experiences the full shear viscosity of the medium. As the molecular weight of n-alkane increases, $D_{self}$ of n-alkanes decreases much faster than $D_{MY2}$ and at the higher molecular weights of n-alkane, MY2 diffuses faster than the solvent fluctuations. Therefore there is a large reduction of friction in longer chains compared to the shorter chains, which enhances the diffusion of MY2. The calculated friction constants of MY1 and MY2 in liquid n-alkanes supported these observations. We deem that this is the origin of the so-called“solventoligomer”transition.

폴리에틸렌글리콜의 분자량에 따른 셀룰로스에서의 확산 거동 (The Effect of the Molecular Weight of Poly(ethylene glycol) on Diffusion through Cellulose)

  • 윤기종;우종형;서영삼
    • 한국염색가공학회지
    • /
    • 제16권1호
    • /
    • pp.48-52
    • /
    • 2004
  • Diffusion/penetration rates of finishing agents are not a major criterion in the design of low molecular weight finishing agents. However, in the case of polymeric finishing agents, high molecular weights result in large hydrodynamic volumes and diffusion/penetration of the finishing agent into the substrate may become a critical factor in the design of textile finishing agents. Thus the effect of the molecular weight of a model compound, polyethylene glycol, on its diffusion through a cellulose membrane or cotton fabric is studied. Diffusion experiments of polyethylene glycol of molecular weight 400, 1000, 2000, 4600, 8000, and 10000 through cellulose membrane or fabric was carried out in a glass U-tube diffusion apparatus and the half penetration times and the penetration coefficients were determined. Both the half penetration times and the penetration coefficients exhibited a significant change between molecular weight 2000 and 2500 as the molecular weight of polyethylene glycol increased, suggesting that there is a critical molecular weight above which diffusion/penetration becomes difficult. Based on this study on a model compound, it is suggested that polymeric textile finishing agents can be expected to exhibit similar behavior.

Purification and Characterization of Phytoferritin

  • Oh, Suk-Heung;Cho, Sung-Woo;Kwon, Tae-Ho;Yang, Moon-Sik
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.540-544
    • /
    • 1996
  • Ferritins from germinated pumpkin seeds were isolated by ammonium sulfate precipitation (0.55 saturation), ion-exchange chromatography on DEAE-cellulose, and gel filtration chromatographies on Sephacryl S-300 and Sephadex G-100. Pumpkin ferritin contains less iron than soybean ferritin. Pumpkin ferritin cross-reacted with anti-soybean ferritin antiserum made in rabbit, and showed two distinct antibody reactive bands, both of equal intensity. The pumpkin ferritins corresponding to the two bands were separable by centrifugation in a sucrose gradient (20~50%). The molecular weights of the native pumpkin ferritins based on the estimation of sucrose gradient centrifugation, gel filtration on Sephacryl S-300 and non-denaturing polyacrylamide gel electrophoresis appeared to be: 530~580 KD (the large molecular weight pumpkin ferritin) and 330-360 KD (the small molecular weight pumpkin ferritin) The large molecular weight pumpkin ferritin contains less iron. Both pumpkin ferritins cross-reacted with anti-soybean ferritin antibody with a spur formation suggesting partial antigenic recognition.

  • PDF

Synthesis and Properties of Triblock and Multiblock Copolymers Consisting of Poly(L-lactide) and Poly(oxyethylene-co-oxypropylene)

  • Lee, Chan-Woo;Kang, Young-Goo;Kun Jun
    • Macromolecular Research
    • /
    • 제9권2호
    • /
    • pp.84-91
    • /
    • 2001
  • Both A-B-A triblock and multiblock copoly(ester-ether)s consisting of poly(L-Lactide) and poly(oxyethylene-co-oxypropylene) were prepared and characterized. The preparation of the triblock copolymer was done by ring-opening copolymerization of L-lactide with a commercially available telechelic copolyether, Pluronic$\^$TM/(PN) by catalysis of stannous octanoate. The molecular weight and unit composition of the produced copolymers were successfully controlled by changing the L-lactide/PN ratio in feed. However, a high molecular weight copolymer incorporating PN in large amount was not obtained because the molecular weight of the resulting copolymer was limited at a high L-lactide/PN composition. The multiblock copolymer was synthesized by the copolycondensation of oligo(L-lactic acid) prepared by thermal dehydration of L-lactic acid, PN, and dodecanedioic acid as carboxyl/hydroxyl adjusting agent. This polycondensation proceeded by catalysis of stannous oxide to give multiblock copolymers with high molecular weight and wide range of compositions.

  • PDF

하수중 용존 유기물의 생분해도 및 분자량 분포에 따른 거동특성에 관한연구 (A Study on the Biodegradability and Characteristics Based on Apparent Molecular Weight Distribution of Dissolved Organic Matter in Sewage)

  • 최정헌;이윤진;명복태;우달식;이운기;남상호
    • 한국환경보건학회지
    • /
    • 제27권2호
    • /
    • pp.92-99
    • /
    • 2001
  • This present study was aimed to investigate the characteristics of dissoloved organic matter (DOC) in sewage. The results are summarized as follows ; The plateaux reached in 3~4 days by the biodegradability test on sewage samples based on DOC. 쏭 rations of BDOC to DOC were 48, 21, 13 and 11% for raw sewage, primary treatment effluent, secondary treatment effluent and final treatment effluent, respectively. As the SUVA values ranged less 3L/m.mg for the effluent of sewage treatment plant, the DOC is composed largely of non-humic materials, hydrophilic, less aromatic as compared to waters with higher SUVA values. Through the biodegradability test, Dissolved organics showed that the quantity of LMW(Low Molecular Weight) less than 1,000 daltons was decreased, HMW(High Molecular Weight) more than 30,000 daltons had a tendency to increase. Large portion of UV$^{254}$ in final treatment effluent was increased of MMW(Medium Molecular Weight). Also, average removal efficiency of DOC was 32% during sewage treatment.

  • PDF

4개의 폴리카프로락톤 가지 코어를 가지는 스타형 폴리카프로락톤의 합성 및 분석 (Synthesis and characterization of Star Shape Polycaprolactone containing 4-Arm Polycaprolactone Core)

  • An, Sung-Guk;Cho, Chang-Gi
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.199-202
    • /
    • 2002
  • The synthesis of materials with controlled composition and architectures continues to be a focus of considerable current research. Dendritic multiarm polymers such as dendrimer, hyperbranched polymer, and star polymers are three dimensional macromolecules, in which a large number of linear arms of similar molecular weight and narrow molecular weight distribution emanate from a central core. (omitted)

  • PDF

두류 전분의 분자구조적 특성 (Molecular Structural Properties of Legume Starches)

  • 권미라;안승요
    • 한국식품과학회지
    • /
    • 제25권3호
    • /
    • pp.264-269
    • /
    • 1993
  • 아밀로오스와 아밀로펙틴의 고유점도와 중합도는 강남콩이 다른 시료에 비해 작았다. 겔 크로마토그래피에 의한 분자량 분포의 연구에서는 전분의 경우 강남콩이 대체로 작은 분자들이 많음을 보여주었다. 아밀로오스의 분자량 분포는 특히 강남콩 아밀로오스가 분자량이 작은 것으로 나타났으며 동부와 녹두는 강남콩이나 팥보다 컸고, 팥은 중간이었다. 아울러 아밀로펙틴의 경우 pullulanase로 분해시켰을 때 잘라지는 가지 부분들이 강남콩은 약간 짧았고 동부나 녹두는 강남콩보다는 길었으며 서로 비슷했다. 또한 동부나 녹두는 긴 사슬(DP 40 부근)에 비해 짧은 사슬(DP 15 부근)의 비율이 더 크게 나타났다.

  • PDF

호알카리성 Bacillus sp. YS-309로부터 $\beta$-Galactosidase의 정제 (Purification of $\beta$-Galactosidase from Alkalophilic Bacillus sp. YS-309)

  • 유주현;윤성식
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.587-592
    • /
    • 1989
  • 토양으로부터 분리한 호알카리성 Bacillus sp. YS-309의 조효소액을 조제하고 제핵산, ammonium sulfate 침전, DEAE-cellulose column chromatography, Sephacryl S-200 gel-filtration, DEAE-Sephadex A-50 chromatography 등을 단계적으로 수행하여 6.9배 정제된 순도 98%의 정제효소를 얻었으며, 활성염색을 실시하여 정제한 효소단백질이 $\beta$-galactosidase임을 확인하였다. 정제효소의 분자량은 205,000으로 monomer의 분자량이 56,000인 동일크기의 tetramer로 구성되어 있다고 판단되었다.

  • PDF