• Title/Summary/Keyword: Large flat panel displays

Search Result 55, Processing Time 0.023 seconds

FRAME RATE CONVERSION IC FOR FULL HD 120 HZ LCD FLAT PANEL DISPLAYS

  • Schu, Markus;Hahn, Marko;Rieder, Peter
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1089-1092
    • /
    • 2007
  • New display technologies including LCD and plasma panels and Digital Light Projection (DLP) systems all offer large screens and impressive picture quality. However, flat-panel displays require a sophisticated picture processing to let these panels perform at their optimum levels. This paper explains why motion compensating techniques combined with frame rate conversion and quasi-impulse driving reduces motion blur and film judder for flat panel displays and presents the IC and its system application using this technique.

  • PDF

Intelligent Load Distribution of Two Cooperating Robots for Transporting of Large Flat Panel Displays

  • Cho, Hyun-Chan;Kim, Doo-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.25-32
    • /
    • 2005
  • This paper proposes a method for the intelligent load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required Joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general, the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning; if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force (actors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

Optimal Load Distribution of Transport ing System for Large Flat Panel Displays

  • Kim Jong Won;Jo Jang Gun;Cho Hyun Chan;Kim Doo Yong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.110-123
    • /
    • 2005
  • This paper proposes an intelligent method for the optimal load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general , the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning: if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force factors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

Frequency Domain Pre-Processing for Automatic Defect Inspection of TFT-LCD Panels (TFT-LCD 패널의 자동 결함 검출을 위한 주파수영역 전처리)

  • Nam, Hyun-Do;Nam, Seung-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1295-1297
    • /
    • 2008
  • Large-sized flat-panel displays are widely used for PC monitors and TV displays. In this paper, frequency domain pre-filter algorithms are presented for detection of defects in large-sized Thin Film Transistor-Liquid Crystal Display(TFT-LCD) panel surfaces. Frequency analysis with 1-D, 2-D FFT methods for extract the periodic patterns of lattice structures in TFT-LCD is performed. To remove this patterns, frequency domain band-stop filters were used for eliminating specific frequency components. In order to acquire only defected images, 2-D inverse FFT methods to inverse transform of frequency domain images were used.

The Next Wave in Display Innovation

  • Webster, Steven C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.4-4
    • /
    • 2008
  • The progress in flat panel displays over the last two decades has been astonishing. In just 20 years, the LCD-TV grew up from a 2-inch curiosity, to an industry that will sell about 120 million flat panel TV's this year, with viewing area up to 4000 times larger. That success is based on continuous innovation, especially in manufacturing processes. For the next decade to bring another doubling of the business, progress will need to continue in four major areas: Human factors, ecological impact, visual quality, and of course continued drive towards affordability. This talk will detail the technology advances that can allow this industry to meet those challenges. Human factors. Today, we adapt our lifestyle to our technology. People organize their offices, and their homes, around displays. We pass around mobile phones to share images, rather than experiencing them as a group. Billions of newspapers continue to be sold daily. Advances in flexible displays can lead to large portable displays. "New era projection" includes the handheld Pico Projectors that are already on the market, and will ultimately appear integrated in mobile phones the same way cameras do today. "Eco" impact. Today TV's are one of the top energy consumers in a U.S. home, and the fastest growing. Watching a large flat panel TV can cost twice as much as running a large refrigerator. With today's concern about energy consumption, regulations are starting to emerge worldwide to limit TV electrical use. Fortunately, good solutions exist in using light management films to eliminate bulbs, saving power without increasing cost. Going forward, LED backlights will drive another step downward. OLED displays might be the ultimate solution. Visual quality. The color of an LCD-TV is still often considered inferior to a far less expensive CRT. And almost all displays suffer from representing a three-dimensional world on a two dimensional surface. The technology to improve color is available today, and will likely move from premium sets into the mainstream as costs come down. 3D is now arriving in movie theaters worldwide, and that will drive up the demand for similar realistic images in home theaters. And the technology is emerging today for 3D representation to move beyond specialized applications into everyday use, on screens large and small. Affordability. The world takes cost-down miracles for granted in consumer electronics. Each of these other advances will be balanced with a drive for affordability, especially as the market grows in emerging countries. The other three challenges must be met without increasing cost. Putting this all together, the next few years will emphasize "eco friendly" designs, and enhanced images such as 3D. By 2013 we will start to see serious penetration by emissive technologies (OLED, high efficiency plasma, or other), with the "ultimate display" likely not in the market for a decade. Lots of opportunities for innovation remain ahead of us.

  • PDF

Development of Air-floating Conveyor System for FPD (FPD용 공기부상 이송컨베이어 시스템 개발)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The CRT(Cathode Ray Tube) displays have been substituted for FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) because they have a convex surface, large volume and heavy weight. The productivity of FPDs is greatly dependent on the area of thin glass panel with $0.6{\sim}0.8mm$ thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass Panel. Through FEM(Finite Element Method) analysis and fluid analysis, we developed an non-contact and air-floating conveyor system which consists of transport-module, distributor, horizontal/vertical changer and controller for the 7th generation glass panel (2,200mm in width, 1,870mm in length and 0.7mm in thickness). The design technology developed in this study can be effectively applied to a conveyor system for a larger-scaled thin glass panel.

A Touch-sensitive Display with Embedded Hydrogenated Amorphous-silicon Photodetector Arrays (비정질 실리콘 광센서를 이용한 터치 감응 디스플레이 설계 및 제작)

  • Lee, Soo-Yeon;Park, Hyun-Sang;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2219-2222
    • /
    • 2009
  • A new touch-sensitive hydrogenated amorphous silicon(a-Si:H) display with embedded optical sensor arrays is presented. The touch-sensitive panel operation was successfully demonstrated on a prototype of 16-in. active-matrix liquid crystal display (AMLCD). The proposed system provides the finger touched point without the real-time image processing of information of the captured images. Due to the simple architecture of the system, we expect the introduction of large-area touch-sensitive display panels.

Reduction of the air consumption in the air conveyor with the air slit (공기 슬릿 구조를 이용한 공기 부상 컨베이어의 공기 소모량 감소)

  • 이학구;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.231-236
    • /
    • 2004
  • The area of flat glass panel displays such as LCD (Liquid crystal display) and PDP (Plasma display panel) has been increased more than 2 $\times$ 2 m$^2$ for productivity improvement. However, such a large panel area incurs large panel deflection during panel transfer using robots or AGV (Automated guided vehicle) systems. Therefore, electronic industries are making an effort to find an alternative transfer system for the large glass panels with small deflection. The air conveyor with porous pads is one plausible solution, but it becomes expensive because the large porous pads cost much and air consumption increases as the panel area increases. In this work, a simple air slit levitating conveyor was devised to lower the equipment cost and to reduce the air consumption of system. The air flow model between the LCD glass panel and conveyor was constructed and its validity was verified by experiments. To minimize the air consumption, the conveyor dimensions were optimized, and the air consumptions between the air conveyors with the air slit and that with the porous pad were compared.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

Calibration Technology for Precise Alignment of Large Flat Panel Displays (대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술)

  • Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.