• Title/Summary/Keyword: Large fault

Search Result 675, Processing Time 0.031 seconds

Evaluation of fault coverage of digital circutis using initializability of flipflops (플립플롭의 초기화 가능성을 고려한 디지탈 회로에 대한 고장 검출율의 평가 기법)

  • 민형복;김신택;이재훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.11-20
    • /
    • 1998
  • Fault simulatior has been used to compute exact fault coverages of test vectors for digial circuits. But it is time consuming because execution time is proportional to square of circuit size. Recently, several algorithms for testability analysis have been published to cope with these problems. COP is very fast and accurate but cannot be used for sequential circuits, while STAFAN can be used for sequential circuits but needs vast amount of execution time due to good circuit simulation. We proposed EXTASEC which gave fast and accurate fault coverage. But it shows noticeable errors for a few sequential circuits. In this paper, it is shown that the inaccuracy is due to uninitializble flipflops, and we propose ITEM to improve the EXTASEC algorithm. ITEM is an improved evaluation method of fault coverage by analysis of backward lines and uninitializable flipflops. It is expected to perform efficiently for very large circuits where execution time is critical.

  • PDF

A Development of the Fault Detection System of Wire Rope using Magnetic Flux Leakage Inspection Method and Noise Filter (누설자속 탐상법 및 노이즈 필터를 이용한 와이어로프의 결함진단시스템 개발)

  • Lee, Young Jin;A, Mi Na;Lee, Kwon Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.418-424
    • /
    • 2014
  • A large number of wire rope has been used in various industries such as cranes and elevators. When wire used for a long time, wire defects occur such as disconnection and wear. It leads to an accident and damage to life and property. To prevent this accident, we proposed a wire rope fault detection system in this paper. We constructed the whole system choosing the leakage fault detection method using hall sensors and the method is simple and easy maintenance characteristics. Fault diagnosis and analysis were available through analog filter and amplification process. The amplified signal is transmitted to the computer through the data acquisition system. This signal could be obtained improved results through the digital filter process.

Improved distance relay suitable for intertie protection of a wind farm considering Fault Ride-Through requirement (풍력단지의 Fault Ride-Through 기능을 위한 연계선 보호용 거리계전기의 성능향상 기법)

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Zheng, Tai-Ying;Lee, Byung-Eun;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.442_443
    • /
    • 2009
  • A large wind farm should satisfy the requirements for a grid and accomplish the optimization of the wind farm system. In that point of view, the wind farm intertie protection system, which must consider the Fault Ride-Through (FRT) requirement for more reliable protection, should be improved. This paper proposes a modified distance relay suitable for protection of a wind farm intertie considering a FRT requirement. The frequency change is used to discriminate the intertie fault from a outside zone fault. The performance of the proposed algorithm is verified using a PSCAD/EMTDC simulator.

  • PDF

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

Optimal Design of HTS Fault Current Limiter using Monte Carlo Simulation Method (Monte Carlo Simulation을 이용한 초전도 한류기 EMTDC 모델의 파라메터 최적 설계)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.135-139
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is large fault current which exceeds the SCC(Short Circuit Capacity) of circuit breaker, As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. However, the parameters of HTS-FCL should be designed optimally to have a best performance. Under this background, this paper presents the optimal design method of parameters for resistive type HTS-FCL using stochastic analysis technique.

Fault Isolation for a Diesel Engine Actuator (디젤엔진 위치서보시스템을 위한 고장 식별)

  • Park, Tae-Geon;Hur, Hak-Bom;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.417-419
    • /
    • 1998
  • In a large diesel engine actuator position servo system, it is impossible to isolate an actuator fault from a load torque with conventional fault detection isolation (FDI) schemes because they are propagated through a channel. This paper deals with a parity equation based residual generation to isolate them in the system. The actuator fault is modelled by a multiplicative type fault that can be characterized as discrepancies between the nominal and actual plant parameters, whereas the load torque is modelled by an additive disturbance. The transformation implemented in the residual generator should be determined on-line to achieve the isolation. Simulation studies show the practical applicability of the FDI scheme.

  • PDF

Healthy Assessment of Generator Stator Cores using EL-CID (ELectromagnetic Core Imperfection Detector) (EL-CID를 이용한 발전기 고정자 철심의 건전성 평가)

  • Kim, Byeong-Rae;Kim, Hee-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.356-362
    • /
    • 2009
  • The ELectromagnetic Core Imperfection Detector (EL-CID) test was performed on a small generator in the laboratory and a gas turbine generator in the field to assess the fault condition of generator stator core. Artificial defects with six different sizes were introduced in the small generator. The scan results on six defects show a very large increase in the magnitude of fault current compared to that obtained with a healthy core. After the stator core heats up, a thermal imaging camera was used to detect hot spot on the inner surface of the core for comparison. Several faults were found during inspection of the gas turbine generator with the EL-CID. It has been shown that the existence of a fault can be determined by monitoring the magnitude of fault current.

The Evaluation of Signal Reliability for single Stuck-at-type Fault in Digital Circuit (디지털회로의 단일고착형 결함에 대한 신호적 신뢰도계정)

  • 김영일;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 1987
  • This paper presented a method evaluating the signal reliability for signal stuck-at-type in digital circuits. Here, the signal reliability is defined as the probability that circuit output is correct, even though the fault existed at the internal parts of digital circuit. In evaluating the signal reliability, this paper presented not only fault model and algorithm for signal stuck-at-type fault but also computer program for evaluating the signal reliability with respect to complex and large circuit.

  • PDF

A study on the design of fault diagnostic system based on PCA (PCA-기반 고장 진단 시스템 설계에 관한 연구)

  • Kim, Sung-Ho;Lee, Young-Sam;Han, Yoon-Jong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.600-605
    • /
    • 2003
  • PCA(Principle Component Analysis) has emerged as a useful tool for process monitoring and fault diagnosis. The general approach requires the user to identify the root cause by interpreting the residual or principle components. This could be tedious and often impossible for a large process. In this paper, PCA scheme is combined with the FCM-based fault diagnostic algorithm to enhance the diagnostic results. The implementation of the FCM-based fault diagnostic system by using PCA is done and its application is illustrated on the two-tank system.