• Title/Summary/Keyword: Large eddy

Search Result 665, Processing Time 0.028 seconds

A Subgrid scale model with a 3 -dimensional explicit filtering (3차원 외재적 필터링 을 이용한 SGS 모델)

  • Lee, Kyung-Seh;Baek, Je-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.634-637
    • /
    • 2008
  • A large eddy simulation with an explicit filter on unstructured mesh is presented. The flow filed is semi-implicitly marched by a fractional step method. Spatial discretization of the solver is designed to guarantee the second order accuracy. An isotropic explicit filter is adopted for measuring the level of subgrid scale velocity fluctuation. The filter is linearity-preserving and has second order commutation error. The developed subgrid scale model is basically eddy viscosity model which depends on the explicitly filtered fields and needs no additional ad hoc wall treatment, such as van Driest damping function. For the validation, the flows in a channel and a pipe are calculated and compared to experimental data and numerical results in the literature.

  • PDF

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

LARGE EDDY SIMULATION OF THERMAL STRIPING IN THE UPPER PLENUM OF FAST REACTOR (대와동모사법을 사용한 고속로 상부플레넘에서의 thermal sriping 해석)

  • Choi, S.K.;Han, J.W.;Kim, D.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.29-36
    • /
    • 2014
  • A computational study of a thermal striping in the upper plenum of PGSFR(Prototype Generation-IV Sodium-cooled Fast Reactor) being developed at the KAERI(Korea Atomic Energy Research Institute) is presented. The LES(Large Eddy Simulation) approach is employed for the simulation of thermal striping in the upper plenum of the PGSFR. The LES is performed using the WALE (Wall-Adapting Local Eddy-viscosity) model. More than 19.7 million unstructured elements are generated in upper plenum region of the PGSFR using the CFX-Mesh commercial code. The time-averaged velocity components and temperature field in the complicated upper plenum of the PGSFR are presented. The time history of temperature fluctuation at the eight locations of solid walls of UIS(Upper Internal Structure) and IHX(Intermediate Heat eXchanger) are additionally stored. It has been confirmed that the most vulnerable regions to thermal striping are the first plate of UIS. From the temporal variation of temperature at the solid walls, it was possible to find the locations where the thermal stress is large and need to assess whether the solid structures can endure the thermal stress during the reactor life time.

LARGE EDDY SIMULATION OF ORDINARY & EMERGENCY VENTILATION FLOW IN UNDERGROUND SUBWAY STATION (지하역사 승강장 및 대합실 평상시 비상시 급·배기 환기 Large Eddy Simulation)

  • Jang, Yong-Jun;Ryu, Ji-Min;Park, Duck-Shin
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.72-78
    • /
    • 2013
  • The turbulent flow behavior of air supply and exhaustion in the Shin-gum-ho subway station is analyzed for ordinary and emergency state. The depth of Shin-gum-ho station is 43.6m which consists of the island-type platform(8th floor in underground) and a two-story lobby (first & second floor in underground). An emergency stairway connects between the platform and the lobby. Ventilation operation mode for ordinary state is set up as a combination of air supply and exhaustion in the lobby and platform, while for emergency state it is set up as a full air supply in the lobby and a full exhaustion in the platform. The entire station is covered for simulation. The ventilation diffusers are modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes of $0.6m{\times}0.6m$ and 4 rectangular shapes of $1.2m{\times}0.8m$ in the platform. The total of 7.5million grids are generated and whole domain is divided to 22 blocks for MPI efficiency of calculation. Large eddy simulation(LES) is applied to solve the momentum equation and Smagorinsky model($C_s$=0.2) is used as SGS(subgrid scale) model. The time-averaged velocity fields are compared to experimental data and show a good agreement with it.

Eddy Kinetic Energy in the East Sea Estimated from Topex/Poseidon Altimeter Measurements

  • Cho Kwangwoo;Cho Kyu-Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.219-228
    • /
    • 2002
  • Based on the five-year (October 1992 through September 1997) Topex/Poseidon altimeter measurements, we describe the statistical characteristics of the eddy variability in the East Sea in terms of sea surface height anomaly, slope variability, and eddy kinetic energy (EKE). The sea surface height anomalies in the East Sea are produced with standard corrections from Topex/Poseidon measurements. In order to eliminate the high frequency noise in the sea surface height anomaly data, the alongtrack height anomaly data was filtered by about 40 km low-pass Lanczos filter based on Strub et al. (1997) and Kelly et a1. (1998). We find that there exists a distinct spatial contrast of high eddy variability in the south and low eddy energy in the north, bordering the Polar Front. In the northwestern area $(north\;of\;39^{\circ}N\;and\;west\;of\;133^{\circ}E)$ from the Polar Front where the eddies frequently appear, the EKE is also considerabel. The high kinetic energy in the southern East Sea reveals a close connection with the paths of the Tsushima Warm Current, suggesting that the high variability in the south is mainly generated by the baroclinic instability process of the Tsushima Warm Current. This finding is supported by other studies (Fu and Zlontnicki, 1989; Stammer, 1997) wh.ch have shown the strong eddy energy coupled in the major current system. The monthly variation of the EKE in both areas of high and low eddy variability shows a strong seasonality of a high eddy kinetic energy from October to February and a relatively low one from March to September. The sequential pattern of wind stress curl shows resemblance with those of monthly and seasonal EKE and the two sequences have a correlation of 0.82 and 0.67, respectively, providing an evidence that wind stress curl can be the possible forcing for the monthly and seasonal variation of the EKE in the East Sea. The seasonality of the EKE also seems to correlate with the seasonality of the Tsushima Warm Current. There also exists the large spatial and interannual variabilities in the EKE.

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.

An Investigation on Turbulent Flow Characteristics According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모 와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • This paper handled an investigation on the turbulent flow characteristics of three-dimensional small-size axial fan(SSAF) according to operating loads. Also, it was carried out by unsteady-state, incompressible and three-dimensional large eddy simulation(LES). The downstream flow type of SSAF is changed from axial flow to radial flow around the beginning of stall region at the aerodynamic performance curve. Axial mean velocity component largely grows around blade tip at the operating point of A to D, but transverse and vertical mean velocity components as well as Reynolds shear stresses highly develop around blade tip at the operating point of E to H. On the other hand, the peak value of turbulent kinetic energy developed around blade tip shows the highest at the operating point of E.

Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings

  • Gao, Yang;Gu, Ming;Quan, Yong;Feng, Chengdong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.597-616
    • /
    • 2020
  • The blockage effect on the aerodynamic characteristics of tall buildings is a fundamental issue in wind tunnel test but has rarely been addressed. To evaluate the blockage effects on the aerodynamic forces on a square tall building and flow field peripherally, large eddy simulations (LES) were performed on a 3D square cylinder with an aspect ratio of 6:1 under the uniform smooth inflow and turbulent atmospheric boundary layer (ABL) inflow generated by the narrowband synthesis random flow generator (NSRFG). First, a basic case at a blockage ratio (BR) of 0.8% was conducted to validate the adopted numerical methodology. Subsequently, simulations were systematically performed at 6 different BRs. The simulation results were compared in detail to illustrate the differences induced by the blockage, and the mechanism of the blockage effects under turbulent inflow was emphatically analysed. The results reveal that the pressure coefficients, the aerodynamic forces, and the Strouhal number increase monotonically with BRs. Additionally, the increase of BR leads to more coherence of the turbulent structures and the higher intensity of the vortices in the vicinity of the building. Moreover, the blockage effects on the aerodynamic forces and flow field are more significant under smooth inflow than those under turbulent inflow.