• Title/Summary/Keyword: Large display devices

Search Result 165, Processing Time 0.026 seconds

Alignment Patterns and Position Measurement System for Precision Alignment of Roll-to-Roll Printing (롤투롤 인쇄전자공정에서 중첩정밀도 향상을 위한 정렬패턴과 위치 측정시스템)

  • Seo, Youngwon;Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1563-1568
    • /
    • 2012
  • Printed electronics is a technology used for forming electronic circuits or devices, and it is used in the manufacture of many products such as RFID tags, solar cells, and flexible display panels with a much lower cost than in the case of semiconductor process technology. Web-guide-type printing such as roll-to-roll printing is a method used to produce printed electronic devices in a large volume. To commercialize such products, highly precise alignment between printed layers is required. In this study, a highly precise alignment system is proposed, and some experimental results are compared with those obtained using a laser surface vibrometer to illustrate the reliability of the proposed system. The robustness of the proposed system to web deformation is also considered experimentally.

Lightweight Convolution Module based Detection Model for Small Embedded Devices (소형 임베디드 장치를 위한 경량 컨볼루션 모듈 기반의 검출 모델)

  • Park, Chan-Soo;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • In the case of object detection using deep learning, both accuracy and real-time are required. However, it is difficult to use a deep learning model that processes a large amount of data in a limited resource environment. To solve this problem, this paper proposes an object detection model for small embedded devices. Unlike the general detection model, the model size was minimized by using a structure in which the pre-trained feature extractor was removed. The structure of the model was designed by repeatedly stacking lightweight convolution blocks. In addition, the number of region proposals is greatly reduced to reduce detection overhead. The proposed model was trained and evaluated using the public dataset PASCAL VOC. For quantitative evaluation of the model, detection performance was measured with average precision used in the detection field. And the detection speed was measured in a Raspberry Pi similar to an actual embedded device. Through the experiment, we achieved improved accuracy and faster reasoning speed compared to the existing detection method.

Effect of Organic Solvent-Modification on the Electrical Characteristics of the PCBM Thin-Film Transistors on Plastic substrate (플라스틱 기판상에 제작된 PCBM 박막 트랜지스터의 전기적 특성에 대한 유기 용매 최적화의 효과에 대한 연구)

  • Hyung, Gun-Woo;Lee, Ho-Won;Koo, Ja-Ryong;Lee, Seok-Jae;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-204
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) have received considerable attention because their potential applications for nano-scale thin-film structures have been widely researched for large-scale integration industries, such as semiconductors and displays. However, research in developing n-type materials and devices has been relatively shortage than developing p-type materials. Therefore, we report on the fabrication of top-contact [6,6]-phenyl-C61-butyricacidmethylester (PCBM) TFTs by using three different solvent, o-dichlorobenzene, toluene and chloroform. An appropriate choice of solvent shows that the electrical characteristics of PCBM TFTs can be improved. Moreover, our PCBM TFTs with the cross-linked Poly(4-vinylphenol) dielectric layer exhibits the most pronounced improvements in terms of the field-effect mobility (${\sim}0.034cm^2/Vs$) and the on/off current ratio (${\sim}1.3{\times}10^5$) for our results. From these results, it can be concluded that solvent-modification of an organic semiconductor in PCBM TFTs is useful and can be extended to further investigations on the PCBM TFTs having polymeric gate dielectrics. It is expected that process optimizations using solution-processing of organic semiconductor materials will allow the development of the n-type organic TFTs for low-cost electronics and various electronic applications.

The Current Status of Korean Industrial Crisis Area: Industrial Environment and Crisis Status in Gumi Region (한국 산업위기지역의 현 주소: 구미지역 산업 환경과 위기실태)

  • Jeon, Ji-Hye;Lee, Chul-Woo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.291-303
    • /
    • 2019
  • This study analyzed the changes in the industrial environment surrounding the Gumi region and the status of the industrial crisis in the Gumi area amid such changes. The Gumi region is experiencing a more turbulent period than ever in the environment changes at the international, national and local levels, such as the transition to the Fourth Industrial Revolution, the weakening of the competitiveness of key industries including mobile devices and displays, and the moving-out of core companies such as Samsung and LG Group. Accordingly, efforts have been made to diversify the industrial structure by fostering industry of automobile parts, high-tech medical devices and carbon materials to cope with and adapt to environmental changes at the regional level. However, the Gumi region is still locked in to the mono-cultural, large enterprise-dependent industrial structure centering on the mobile and display sectors, failing to overcome the regional industrial crisis and stagnating the overall local economy. The relocation of large companies began to increase in the 2010s, reducing the protection of large corporations against environmental changes at the corporate level. As a result, the crisis factors of small and mediumsized enterprises are gradually expanding to the national and international scale and working more complexly, which is beyond the level they can afford. So it is highly likely that the current industrial crisis will deepen. Therefore, it is necessary to strengthen the resilience to adapt to changes in the environment when it comes to overcoming the industrial crisis in Gumi region. To this end, it is necessary to improve innovation capabilities and diversify businesses based on convergence and complex technologies at the enterprise level, and to be selected as a special crisis response area aimed at creating an innovative ecosystem through autonomous resonance of companies and industries at the local level.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

Comparison of limited- and large-volume cone-beam computed tomography using a small voxel size for detecting isthmuses in mandibular molars

  • de Souza Tolentino, Elen;Andres Amoroso-Silva, Pablo;Alcalde, Murilo Priori;Yamashita, Fernanda Chiguti;Iwaki, Lilian Cristina Vessoni;Rubira-Bullen, Izabel Regina Fischer;Duarte, Marco Antonio Hungaro
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • Purpose: This study was performed to compare the ability of limited- and large-volume cone-beam computed tomography (CBCT) to display isthmuses in the apical root canals of mandibular molars. Materials and Methods: Forty human mandibular first molars with isthmuses in the apical 3 mm of mesial roots were scanned by micro-computed tomography (micro-CT), and their thickness, area, and length were recorded. The samples were examined using 2 CBCT systems, using the smallest voxels and field of view available for each device. The Mann-Whitney, Friedman, and Dunn multiple comparison tests were performed (α=0.05). Results: The 3D Accuitomo 170 and i-Cat devices detected 77.5% and 75.0% of isthmuses, respectively (P>0.05). For length measurements, there were significant differences between micro-CT and both 3D Accuitomo 170 and i-Cat(P<0.05). Conclusion: Both CBCT systems performed similarly and did not detect isthmuses in the apical third in some cases. CBCT still does not equal the performance of micro-CT in isthmus detection, but it is nonetheless a valuable tool in endodontic practice.

Attributes for Developing a Database for Construction Information Interface

  • Moon, Sungwoo;Cho, Kyeongsu
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.673-673
    • /
    • 2015
  • Earthwork is an operation that provides space for structures, and it takes up a large portion of the construction costs in a construction project. In large-scale earthwork, numerous types of construction equipment are used in the operation. The types of equipment should be selected based on the field conditions and the construction methods. These construction vehicles are constantly changing positions during the earthwork operation. Therefore, the equipment operators require effective communication to ensure the efficiency of the earthwork operation. All equipment operators should exchange information with the other equipment operators. Information should be exchanged continuously to support decision making and increase productivity during the earthwork operation at the construction site. This paper investigates the attributes required for an information interface between construction vehicles during an earthwork operation. This paper 1) discusses the importance of an information interface for construction vehicles in order to increase productivity during an earthwork operation, 2) analyses the types of attributes that need to be communicated between construction vehicles, and 3) provides a database that has been built for attribute control. The database built for the information interface between construction vehicles will enhance communication between vehicle operators. Table I shows the typical attributes that should be shared between the excavator operator and the dump truck operator. This information needs to be shared among the operators, as it helps them to plan the earthwork operation in a more efficient manner. A database has been developed to store this information in an entity relation diagram. A user-interface display environment is also developed to provide this information to the operators in the construction vehicles. The proposed interface can help exchange information effectively and facilitate a common understanding during the earthwork operation. For example, the vehicle operators will be aware of the planned volume, excavated volume, transportation time, and transportation numbers. As a part of this study, mobile devices, such as mobile phones and google glasses, will be used as hands-on communication tools.

  • PDF

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Web-Based Distributed Visualization System for Large Scale Geographic Data (대용량 지형 데이터를 위한 웹 기반 분산 가시화 시스템)

  • Hwang, Gyu-Hyun;Yun, Seong-Min;Park, Sang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.835-848
    • /
    • 2011
  • In this paper, we propose a client server based distributed/parallel system to effectively visualize huge geographic data. The system consists of a web-based client GUI program and a distributed/parallel server program which runs on multiple PC clusters. To make the client program run on mobile devices as well as PCs, the graphical user interface has been designed by using JOGL, the java-based OpenGL graphics library, and sending the information about current available memory space and maximum display resolution the server can minimize the amount of tasks. PC clusters used to play the role of the server access requested geographic data from distributed disks, and properly re-sample them, then send the results back to the client. To minimize the latency happened in repeatedly access the distributed stored geography data, cache data structures have been maintained in both every nodes of the server and the client.

A Study on Control System of Multi Layer Sputtering Equipment (다층 박막 스퍼터링 장비의 제어시스템에 관한 연구)

  • Lee, Sun-Jong;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.302-308
    • /
    • 2018
  • Multi-Layer Sputtering is aim to develop desired thickness thin film multi-layer with different materials. The multi-layer thin film deposition process occupies a relatively large portion in the process time, because the main reason is that it takes much time to move the substrate to be deposited and to make the chamber into a high vacuum state compared to the process time. Most of semiconductor and display industries sputter a single substance in one chamber and move boards through multi-continuous robots to another chamber to sputter other materials. This will inevitably require multiple chambers, vacuum pumps, and multi-contamination robots within the process facility. To solve these problems, this paper proposes a control system for multi-layer thin film sputtering devices that deposit different materials within a single vacuum chamber and is applied in TFT process. The manufacture and experiment of the control system proved its validity.