• Title/Summary/Keyword: Large container carrier

Search Result 33, Processing Time 0.019 seconds

The Present Status of Pumps Installed in the Large Merchant Ships (대형 상선에서의 펌프사용 현황)

  • Kim, You-Taek;Nam, Chung-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.43-52
    • /
    • 2001
  • Pumps arre used extensively for transporting fluid in many ships. However, the present state of pumps used in the large merchant ships has not been studied. In this paper, we have reported the general description of the operating pumps according to the different ship types(Bulk, Container, Car-Carrier, Tanker, LNG). Moreover, the pump total powers are compared with the main engine Normal Continuous Rating power and the pump total weights are also compared with the ship deadweight.

  • PDF

Analysis of Linear Springing Responses of a Container Carrier by using Vlasov Beam Model (Vlasov 보 모델을 이용한 컨테이너 선박의 스프링잉 응답해석)

  • Kim, Yoo-Il;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.306-320
    • /
    • 2010
  • Modern ultra-large container carriers can be exposed to the unprecedented springing excitation from ocean waves due to their relatively low torsional rigidity. Large deck opening on the deck of container carriers tends to cause warping distortion of hull structure under wave-induced excitation, eventually leading to the higher chance of resonance vibration between its torsional response and incoming waves. To handle this problem, a higher-order B-spline Rankine panel method and Vlasov-beam FE model was directly coupled in the time domain, and the coupled equation was solved by using an implicit iterative method. In order to capture the complicated behavior of thin-walled open section girder, a sophisticated beam-based finite element model was developed, which takes into account warping distortion and shear-on-wall effect. Then, the developed beam model was directly coupled with the time-domain Rankine panel method for hydrodynamic problem by using the fixed-point iteration method. The developed computational scheme was validated through the comparison with the frequency-domain solution on the container carrier model in linear springing regime.

Comparative Study on the Application of Direct Analysis Method to Large Container Carriers (대형 컨테이너선의 직접해석법에 관한 비교 연구)

  • Ryu Hong-Ryeul;Lee Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.484-493
    • /
    • 2006
  • Recently, direct load analysis using ship motion program is required to confirm structural safety for the Post-Panamax class large container carrier. However, there is no exact comparative study data for structural response between 20 and 30 wave load. So, in this paper, to compare the hull girder stress response between 20 versus 3D wave load calculation method, direct load analysis and global F.E analysis have been performed for three kinds of large container vessels using each 20 and 30 wave load calculation program. The results of 2D wave load RAO(Response Amplitude Operator) of each dominant load parameter(vertical, torsional and horizontal moment) are generally bigger than that of 30 results, especially in vertical wave bending moment. And the results of structural analysis based on the equivalent design wave method shows that there is a big difference in view of stress, but the stress distribution is very similar for each wave load case.

Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part II - Fatigue Damage Estimation (대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part II - 피로 손상도 추정)

  • Kim, Byounghoon;Choi, Byungki;Park, Junseok;Park, Sunggun;Ki, Hyeokgeun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Concerns are emerging in marine industry on the additional fatigue damages induced by hydroelasticity, and large container carriers, among others, are considered to be susceptible to this hydroelastic response due to its large size, deck openings and high speed. This study focuses on the fatigue damage estimation of 9,400TEU container carrier based on the full scale measurement data via long-base strain gage installed on the ship. Some correlation analyses have been also done to check whether there was significant torsional response during the voyage. Direct cycle counting method was used to derive stress histogram and the long-term fatigue damage was estimated based upon that analyzed data. It turned out that the fatigue damage of this particular ship during the measurement period increased by more than 60% due to the hydroelastic response of the hull, and main contribution is considered to come from vertical bending mode.

Study on the Design of Upper Deck Hatch Corner Insert Plates of Large Container Carriers (대형 컨테이너선 상갑판 해치코너부 보강판의 설계에 관한 연구)

  • Park, Sung-Gu;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.331-339
    • /
    • 2006
  • The objective of this paper is to calculate the fatigue strength for upper deck hatch corner insert plate of large container carriers without wave load analysis and global finite element analysis at the initial design stage. Wave load analysis and global F.E. analysis for three container carriers have been performed by GL(Germanischer Lloyd) procedure to propose the equation for hatch corner stress range which is the important factor in fatigue strength calculation. Considering the restraining effect of bulkhead, three types of equation, that is, single tight bulkhead, double tight bulkhead and support bulkhead have been proposed. Using the proposed equations, a simplified fatigue analysis based on GL rules has been performed for two container carriers of which fatigue strength analysis was carried out by GL. From the comparison between fatigue strength result of using the proposed equations and that of GL, it has been found that proposed stress range equations are useful for scantling of upper deck hatch corner insert plates for over 8,000 TEU class container carriers.

A Study on the Speed Effects of Afterbody Appendage for the Container Carrier (컨테이너 운반선의 선미부가물에 의한 속도성능 향상에 대한 연구)

  • Lim, Chae-Seong;Park, Dong-Woo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.32-42
    • /
    • 2007
  • Container vessels are required to have a large KMT to load many containers which requires a wide transom stern form. The wide transom stern generates large stern waves particularly at the scantling draft. This means that reducing the stern wave leads to resistance reduction. Numerical analyses and Model tests for duck-tail of the stern part have been performed to reduce the resistance of the container vessel having the wide transom on the scantling draft and optimize the form of duck-tail with the change of the design parameter i.e. length and edge height. The optimized duck-tail increases the speed by 0.8 % at scantling draft.

  • PDF

On the Model Tests for POD Propulsion Ships

  • Go Seokcheon;Seo Heungwon;Chang Bong Jun
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • The procedures of model test and performance prediction for the CRP-POD propulsion ships, are studied. At the CRP-POD system, which are highly applicable to ultra large container carriers, RPM ratio of two propellers is not fixed, unlike conventional CRP system, and hence the power of each propeller must be predicted respectively. In this paper, a CRP-POD system is designed for 10,000 TEU class ultra large container carriers, and the characteristics of the CRP-POD system are experimentally studied. Finally, based on this study, the procedure of powering performance evaluation for CRP-POD propulsion ships is suggested. However, further studies on quantitative correction of the present procedure are required.

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

  • Cho, Dae-Seung;Kim, Kyung-Soo;Kim, Byung-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

Noise Analysis of Large Container Carrier Vessel on HVAC Noise (대형 컨테이너운반선의 공조 소음 해석사례)

  • Kim, Mun-Su;Cho, Dae-Seung;Kim, Byung-Hee;Kwon, Jong-Hyun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.65-70
    • /
    • 2006
  • In this paper, we introduce prediction program of HVAC system, HJNOVAC Version 2.0. The developed program adopts both the authentic empirical method suggested by NEBB and acoustic power balancing method. The program provides intuitive pre- and post- processor using modern GUI function to help efficient modeling and evaluation of cabin and HVAC component noises. To verify the accuracy and convenience of the program, we carry out noise prediction of HVAC system for 8,100 TEU Container Carrier and measure the noise levels of cabins during sea trial.

  • PDF