• 제목/요약/키워드: Large Transformer

검색결과 333건 처리시간 0.046초

반환부하법에 의한 옥외 주상용 몰드변압기의 과전열화 특정 (The Energized Aging Property of Pole Mount Mold transformer by Back-to-back Method)

  • 황보국;조한구;이운용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.484-487
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. In this paper, the proto type mold transformer of 50kVA class is investigated by routine, type, special test. The outdoor energized aging test is investigated by back-to-back method to verify the long time performance of pole mold transformer. The aging process of transformer is analyzed by various diagnosis method such as DC voltage-current test, $tan{\delta}$, Meggar measurement, winding temperature and etc.

  • PDF

100kVA 주상용 몰드 변압기의 온도분포 해석 (The Temperature Distribution Analysis of Mold transformer)

  • 조한구;이운용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.125-129
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by FEM(finite element method) to analyze winding temperature rise. In this paper, the temperature distribution and thermal stress analysis of 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

Multi-Secondary Transformer: A Modeling Technique for Simulation - II

  • Patel, A.;Singh, N.P.;Gupta, L.N.;Raval, B.;Oza, K.;Thakar, A.;Parmar, D.;Dhola, H.;Dave, R.;Gupta, V.;Gajjar, S.;Patel, P.J.;Baruah, U.K.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.78-82
    • /
    • 2014
  • Power Transformers with more than one secondary winding are not uncommon in industrial applications. But new classes of applications where very large number of independent secondaries are used are becoming popular in controlled converters for medium and high voltage applications. Cascade H-bridge medium voltage drives and Pulse Step Modulation (PSM) based high voltage power supplies are such applications. Regulated high voltage power supplies (Fig. 1) with 35-100 kV, 5-10 MW output range with very fast dynamics (${\mu}S$ order) uses such transformers. Such power supplies are widely used in fusion research. Here series connection of isolated voltage sources with conventional switching semiconductor devices is achieved by large number of separate transformers or by single unit of multi-secondary transformer. Naturally, a transformer having numbers of secondary windings (~40) on single core is the preferred solution due to space and cost considerations. For design and simulation analysis of such a power supply, the model of a multi-secondary transformer poses special problem to any circuit analysis software as many simulation softwares provide transformer models with limited number (3-6) of secondary windings. Multi-Secondary transformer models with 3 different schemes are available. A comparison of test results from a practical Multi-secondary transformer with a simulation model using magnetic component is found to describe the behavior closer to observed test results. Earlier models assumed magnetising inductance in a linear loss less core model although in actual it is saturable core made-up of CRGO steel laminations. This article discusses a more detailed representation of flux coupled magnetic model with saturable core properties to simulate actual transformers very close to its observed parameters in test and actual usage.

초고압 초전도 변압기용 고온 초전도 연속전위도체의 절연특성 (Insulation tests of Continuously Transposed Coated Conductors for a high voltage superconducting transformer)

  • 김영일;김우석;박상호;박찬;이세연;천현권;김상현;이지광;최경달
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.21-24
    • /
    • 2010
  • A cryogenic insulation technique for a high voltage and a large current capacity of a conductor are now two big issues in a field of recent R&D projects of superconducting power devices, especially a superconducting power transformer. For the large rated currents of the power transformer, it is well known that lots of 2nd generation superconducting conductor, so called coated conductor, should be stacked together with transpositions in order to get an even distributions of the currents. We had come up with an idea of a CTCC (Continuously Transposed Coated Conductor) as a conductor for a large power superconducting transformer, and keep trying to verify the usefulness of the conductor. As one of the efforts of verifying, we prepared and tested a sample CTCC with insulations for high voltage, which includes the epoxy coating and Nomex$^{(R)}$ wrapping. This paper contains the insulation process and dielectric breakdown test results. We expect the results obtained from this experiment to improve an insulation technique for high voltages in various cryogenic environments[1,2].

코어없는 초박형 PCB 변압기를 이용한 무접점 전력변환 회로 (A Contactless Energy Transfer Circuit Using Coreless Low-profile PCB Transformer)

  • 최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.505-508
    • /
    • 2000
  • A coreless printed circuit board(PCB) transformer is employed in a contactless energy transfer circuit that achieves an efficient power conversion at the presence of a considerable airgap between the source and the load side. A half-bridge series resonant converter is selected as the contactless energy transfer circuit in order to minimize the detrimental effects of large leakage inductance small magnetizing inductance and poor coupling coefficient of the coreless PCB transformer. The operation and performance of the proposed contactless power converter are verified on a 7 W experimental circuit that provides an 18V/0.4A output from a 210-370 V input source.

  • PDF

첨가제의 영향에 따른 유동대전특성 조사 (The Effect of Additive on the Streaming Electrification)

  • 최창락;임헌찬;박재윤;정재희;성낙진;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 1995
  • Since the streaming electrification phenomena of transformer were made clear on 1970s, many researches have been continued on the improvement of the transformer. This paper describes the effect of additive (BTA, DBPC) and temperature on the streaming electrification of the various materials. The streaming current in the various materials decreases in proportion to the concentration of BTA, results in the inverse electrification. We believe that these results will contribute to the optimal design of HV large-capacity transformer.

  • PDF

전력용 변압기에서 권선방식과 벡터그룹에 따른 보호계전기 동작원리의 그래픽 표현 (Graphical Presentation on Operation Principle of Protective Relay According to Winding Type and Vector Group in Transformer)

  • 이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1410-1412
    • /
    • 1999
  • Protective relay for transformer operates in general by comparing with the differential current and the restraint current. These kinds of currents are changed on magnitude and phasor during the fault according to winding type and vector group. This paper presents the differential and restraint currents and operational principle of differential protective relay for two-winding and three-winding transformer with graphical model. It is developed using MATLAB for an educational purpose on engineer related in power system and protection in university and power utility including large factory.

  • PDF

새로운 방식의 변압기 (Components of a Comprehensive Transformer Monitoring and Diagnostic System)

  • 김형승;클라우드케인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.97-98
    • /
    • 2007
  • A wide range of data is available as too causes of large power transformers. Although the percentage of transformer component failure rates vary, all data shows that the top three failure mechanisms are Load Tap Changers (LTC), Bushings and Windings. To date, the most common methods employed to determine the health of a transformer are off line tests and online temperature monitoring, winding hotspot calculations and dissolved gas analysis.

  • PDF

고온초전도 변압기 및 부싱의 절연설계 (The Insulation Design of HTS Transformer and Bushing)

  • 천현권;최재형;방만식;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.12-15
    • /
    • 2010
  • Important key technologies of high-$T_c$ superconducting (HTS) transformer may include the HTS wire technology, bushing technology, cooling technology, AC loss, reduction technology, large current technology, and cryogenic temperature insulation technology. From among others, the cryogenic temperature insulation technology may be specifically a core technology for ensuring reliability for the smaller size, stability, economic efficiency, and power supply of a transformer. Therefore, the electric insulation technology of a superconducting transformer should be prerequisite. Such relevant studies are ongoing, but still, they are very insufficient for establishing the cryogenic insulation technology as of yet. Therefore, this paper simulated HTS transformer applied with continuous transposed conductor (CTC), which has been studied as a way of reducing AC loss. Also, the paper analyzed the insulation configuration of HTS transformer and bushing, and, accordingly, reviewed various characteristics of insulation breakdown out of liquid nitrogen. Thus, the paper constituted insulation database, and it is going to design the insulation of a transmission class HTS transformer and bushing.

High-Efficiency Non-contact Power Supply System

  • Zheng, Bin;Kwan, Dae-Hwan;Lee, Dae-Sik
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.233-235
    • /
    • 2005
  • Non-contact power supply (NCPS), as a clean and safe energy supply concept has been applying wildly. Comparing with the conventional transformer the non-contact transformer has a large air gap between the long primary winding and the secondary winding. Due to it, the non-contact transformer has increased leakage inductance and reduced magnetizing inductance. So the high frequency series resonant converter has been widly used on the non-contact power supply system for transferring the primary power to the secondary one, from what a high influence voltage can be gained on the secondry coil even though the large air gap exists. However, it still has the disadvantages of the load sensitive voltage gain characteristics when load is changing. In this paper, we propose a fuzzy logic controller to adjust the frequency of the inverter to track the resonat which is changing when the load is change.

  • PDF