• Title/Summary/Keyword: Large Space Structures

Search Result 471, Processing Time 0.026 seconds

Optimization of a telescope movable support structure by means of Volumetric Displacements

  • Ortega, Nestor F.;Robles, Sandra I.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.393-405
    • /
    • 2009
  • The Purpose of this paper is to show the applicability of a methodology, developed by the authors, with which to perform the mechanical optimization of space truss structures strongly restricted. This methodology use a parameter call "Volumetric Displacement", as the Objective Function of the optimization process. This parameter considers altogether the structure weight and deformation whose effects are opposed. The Finite Element Method is employed to calculate the stress/strain state and the natural frequency of the structure through a structural linear static and natural frequency analysis. In order to show the potentially of this simple methodology, its application on a large diameter telescope structure (10 m) considering the strongly restriction that became of its use, is presented. This methodology, applied in previous works on continuous structures, such as shell roof and fluid storage vessels, is applied in this case to a space truss structure, with the purpose of generalize its applicability to different structural topology. This technique could be useful in the morphology design of deployable and retractable roof structures, whose use has extensively spread in the last years.

Bamboo Architecture: Structure, Construction and Space: Part 1

  • Vo Trong Nghia
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.2
    • /
    • pp.113-145
    • /
    • 2024
  • Bamboo is seen as a low cost, lightweight, widely available and environmental-friendly material. In Vietnam, it also connects deeply to our culture. However, it wasn't seen as a viable material for large structures before VTN Architects. Furthermore, Vietnamese cities are facing the same environmental problems as many developing metropolises in the world. Globally, climate change is a serious issue. The need for sustainable construction material is clear. The increasing development of eco-tourism in Vietnam and Asia is also a background. These become the background to the foundation and the development of bamboo architecture by VTN Architects. The journal analyses our development of bamboo construction, joints, structures, and how to use them to realise space and to create eco-friendly architecture. We will talk about our process of bamboo procurement, our construction methods, our unique joint system, how we make a frame unit and how we construct VTN bamboo structures from units.

Optimal Latinized partially stratified sampling for structural reliability analysis

  • Majid Ilchi Ghazaan;Amirreza Davoodi Yekta
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.111-120
    • /
    • 2024
  • Sampling methods are powerful approaches to solving the problems of structural reliability analysis and estimating the failure probability of structures. In this paper, a new sampling method is proposed offering lower variance and lower computational cost for complex and high-dimensional problems. The method is called Optimal Latinized partially stratified sampling (OLPSS) as it is based upon the Latinized Partially Stratified Sampling (LPSS) which itself is based on merging Stratified Sampling (SS) and Latin Hypercube Sampling (LHS) algorithms. While LPSS has a low variance, it may suffer from a lack of good space-filling of its generated samples in some cases. In the OLPSS, this issue has been resolved by employing a new columnwise-pairwise exchange optimization procedure for sample generation. The efficiency of the OLPSS has been tested and reported under several benchmark mathematical functions and structural examples including structures with a large number of variables (e.g., a structure with 67 variables). The proposed method provides highly accurate estimates of the failure probability of structures with a significantly lower variance relative to the Monte Carlo simulations, Latin Hypercube, and standard LPSS.

Efficient Analysis Models for Vertical Vibration of Space Framed Structures (3차원 골조구조물의 효율적인 연직진동해석)

  • 안상경;홍성일;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.78-85
    • /
    • 1996
  • The effect of vertical vibration of a beam is significantly influenced by higher modes of vibration. Therefore, a beam can be modeled using several elements must De used to represent a vibrating beam. As a result, analysis of a space framed structure for vertical vibration requires increase number of elements leading to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. An efficient analysis method for vertical vibration of space framed structures are proposed in this paper which is presented in three method. The first method is to determine minimum nodes that shall be used to obtain dynamic response with the vertical vibration. Secondly, matrix condensation methods are introduced to reduce the computation efforts used to perform dynamic analysis and the selection of primary degree-of-freedom is proposed. The third method is of using the mass participation factor for the selection of primary degree-of-freedom.

  • PDF

Dynamic Modeling and Control of Flexible Space Structures

  • Chae, Jang-Soo;Park, Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1912-1921
    • /
    • 2003
  • This paper presents a global mode modeling of space structures and a control scheme from the practical point of view. Since the size of the satellite has become bigger and the accuracy of attitude control more strictly required, it is necessary to consider the structural flexibility of the spacecraft. Although it is well known that the finite element (FE) model can accurately model the flexibility of the satellite, there are associated problems : FE model has the system matrix with high order and does not provide any physical insights, and is available only after all structural features have been decided. Therefore, it is almost impossible to design attitude and orbit controller using FE model unless the structural features are in place. In order to deal with this problem, the control design scheme with the global mode (GM) model is suggested. This paper describes a flexible structure modeling and three-axis controller design process and demonstrates the adequate performance of the design with respect to the maneuverability by applying it to a large flexible spacecraft model.

Seismic Response Analysis According to the Height of Substructure of the Dome Structure Using Mid-Story Isolation System (중간층 면진을 적용한 돔 구조물의 하부 구조 높이에 따른 지진 응답 분석)

  • Choi, Na-Young;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2019
  • Spatial structure does not have columns and walls installed inside, so they have a large space. There are upper structure and substructure supporting them. The response of seismic loads to the upper structure may be increased or decreased due to the effects of the substructure. Therefore, in this study, the seismic response of the upper structure and the floor response spectrum of the substructure were compared and analyzed according to the height of the substructure in the spatial structure where the LRB was installed. As a result, the possibility of amplification of response was confirmed as seismic waves passed though the substructure, which is likely to increase the response of the upper structures.

Dynamic Characteristics of Space Framed Structures by Using Nonlinear Transient Analysis (비선형 과도해석을 이용한 스페이스 프레임 구조물의 동적특성)

  • Son, Jin Hee;Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.395-402
    • /
    • 2016
  • Space frame structures considering the components such as forms, layers, grids, etc. are possible to form a large space without interior columns. Here, steels having the yield strengths of 210 MPa to 450 MPa are generally used. The high strength steel (i.e., yield strength of 690 MPa) having suitable weldability, aseismicity and economics have been recently developed. In this paper, the high strength steel is applied to the space frame structures in order to analytically find out their transient responses considering the material and geometric nonlinearities. For various circular dome types of space frame structures, the modal analysis and nonlinear transient analysis are carried out using nonlinear three dimensional finite element analysis.

PCG Algorithms for Development of PC level Parallel Structural Analysis Method (PC level 병렬 구조해석법 개발을 위한 PCG 알고리즘)

  • 박효선;박성무;권윤한
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.362-369
    • /
    • 1998
  • The computational environment in which engineers perform their designs has been rapidly evolved from coarse serial machines to massively parallel machines. Although the recent development of high-performance computers are available for a number of years, only limited successful applications of the new computational environments in computational structural engineering field has been reported due to its limited availability and large cost associated with high-performance computing. As a new computational model for high-performance engineering computing without cost and availability problems, parallel structural analysis models for large scale structures on a network of personal computers (PCs) are presented in this paper. In structural analysis solving routine for the linear system of equations is the most time consuming part. Thus, the focus is on the development of efficient preconditioned conjugate gradient (PCG) solvers on the proposed computational model. Two parallel PCG solvers, PPCG-I and PPCG-II, are developed and applied to analysis of large scale space truss structures.

  • PDF

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures (대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근)

  • Lee, Yun-Su;Park, Do-Hyun;SunWoo, Choon;Kim, Gyo-Won;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

Distributed Structural Analysis Algorithms for Large-Scale Structures based on PCG Algorithms (대형구조물의 분산구조해석을 위한 PCG 알고리즘)

  • 권윤한;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.385-396
    • /
    • 1999
  • In the process of structural design for large-scale structures with several thousands of degrees of freedom, a plethora of structural calculations with large amount of data storage are required to obtain the forces and displacements of the members. However, current computational environment with single microprocessor such as a personal computer or a workstation is not capable of generating a high-level of efficiency in structural analysis and design process for large-scale structures. In this paper, a high-performance parallel computing system interconnected by a network of personal computers is proposed for an efficient structural analysis. Two distributed structural analysis algorithms are developed in the form of distributed or parallel preconditioned conjugate gradient (DPCG) method. To enhance the performance of the developed distributed structural analysis algorithms, the number of communications and the size of data to be communicated are minimized. These algorithms are applied to the structural analyses of three large space structures as well as a 144-story tube-in-tube framed structure.

  • PDF