• Title/Summary/Keyword: Large Space Structures

Search Result 469, Processing Time 0.026 seconds

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

Three Crystal Structures of Dehydrated $Cd^{2+}$ and $Rb^+$ Exchanged Zeolite A, $Cd_xRb_{12-2x}-A,$ x=4.0, 5.0 and 5.95

  • Song, Yeong-Sim;Kim, Un-Sik;Kim, Yang;Kim, Duk-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.328-331
    • /
    • 1990
  • Three crystal structures of dehydrated Cd(II) and Rb(I) exchanged zeolite A, $Cd_{4.0}Rb_{4.0}-A (a = 12.204(3) {\AA}), Cd_{5.0}Rb_{2.0}-A (a = 12.202(1) {\AA}),$ and $Cd_{5.95}Rb_{0.1}-A (a = 12.250(2) {\AA}),$ have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C.$ All crystals were ion exchanged in flowing streams of mixed $Cd(NO_3)_2·4H_2O$ and $RbNO_3$ aqueous solution with total concentration of 0.05 M. All crystals were dehydrated at ca. $450^{\circ}C$ and $2×10^{-6}$ Torr for 2 days. In all of these structures, $Cd^{2+}$ ions are found on threefold axes, each nearly at the center of a 6-oxygen ring. The first three $Rb^+$ ions per unit cell preferentially associate with 8-oxygen rings, and additional $Rb^+$ ions, if present, are found on threefold axes in the large cavity. The final $R_1$ and $R_2$ values for the three structures are 0.087 and 0.079, 0.059 and 0.067, and 0.079 and 0.095, respectively.

Partitioned structural eigenvalue analysis (부분 구조물 합성으로 이루어진 고유치 문제 해석)

  • Jung, Eui-Il;Na, Hye-Joong;No, Suk-Hong;Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.117-119
    • /
    • 2005
  • For large structural eigen-analysis, the whole structure is divided into some partitioned structures and through synthesis of partitioned structural model the eigen-data of structure can be obtained. In that case, eigenvalue problem consists of semidefinite mass matrix form because of displacement constraint condition. In this work the eigenvalue problem is considered by means of several method, determinant search and null space reduction method.

  • PDF

Towards a Better Understanding of Structure Formation: Galaxies and Dark Matter

  • Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • Understanding the interplay between galaxies and dark matter in the universe is one of key challenges in modern astrophysics. This provides an important test of structure formation scenarios and cosmological models. I discuss three aspects of this test: (1) comparing the matter distribution from galaxy redshift surveys with that from weak-lensing surveys, (2) statistical comparison of large-scale structures between observations and cosmological simulations, and (3) multi-wavelength study of galaxies. These tests underscore the importance of combining photometric and spectroscopic surveys in observations along with cosmological simulations for exploring and understanding the structure formation.

  • PDF

A Study on the Dynamic Instability Characteristics of Latticed Dome Under STEP Excitations (STEP 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 2012
  • The space frame structure is one of the large span structural system consisting of longitudinal and latitudinal members. The members are connected in three dimension. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability under STEP Excitations behavior according to rise-span ratio(${\mu}$) and shape imperfection.

A Study on the Optimization of a Spacecraft Structure by Using Coupled Load Analysis Model and Modal Transient Analysis (연성하중해석 모델과 모달과도해석을 이용한 위성체 구조부재의 최적화 연구)

  • Hwang, Do-Soon;Lee, Young-Shin;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.34-48
    • /
    • 2004
  • In this paper an optimization algorithm is suggested to reduce the huge computation time in the optimum design of large structures, especially in spacecraft structures. It combines the coupled load analysis model using a constrained mode of component mode synthesis and the modal transient analysis. The computer simulation code is developed and evaluated in optimizing spacecraft platforms. The developed algorithm can alleviate the computational load with adequate accuracy. From the optimization of a spacecraft structural member, the characteristics of each structural member can be understood.

An Experimental Study on the Buckling & Behaviour of Single-Layer Latticed Dome (단층 래티스 돔의 좌굴 및 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-44
    • /
    • 2006
  • The form-resistant Systems like a dome and shell are used more widely than post-beam structure system in large space structure. Single layer latticed dome system, one of the form-resistant system, has great merits in manufacturing and constructing but the failure mechanism is not clarified yet. The purpose of this paper is to find out the buckling characteristics of single-layer latticed domes with square network by using the experimental method. Major test parameters are the stiffness of lattice member and space of square lattice. The specimens are applied uniform loading of snow type.

  • PDF

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Collapse Behavior of Small-Scaled RC Structures Using Felling Method (전도공법에 의한 축소모형 철근콘크리트 구조물의 붕괴거동)

  • Park, Hoon;Lee, Hee-Gwang;Yoo, Ji-Wan;Song, Jeung-Un;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.381-388
    • /
    • 2007
  • The regular RC structures have been transformed into irregular RC structures by alternate load of RC structures during explosive demolition. Numerical simulation programs have contributed to a better understanding of large displacement collapse behavior during explosive demolition, but there remain a number of problems which need to be solved. In this study, the 1/5 scaled 1, 3 and 5 stories RC structures were designed and fabricated. To consider the collapse possibility of upper dead load, fabricated RC structures were demolished by means of felling method. To observe the collapse behavior of the RC structures during felling, displacement of X-direction (or horizontal), displacement of Z-direction (or vertical) md relative displacement angle from respective RC structures were analyzed. Finally explosive demolition on the scaled RC structures using felling method are carried out, collapse behavior by felling method is affected by upper dead load of scaled RC structures. Displacement of X and Z direction increases gradually to respective 67ms and 300ms after blasting. It is confirmed that initial collapse velocity due to alternate load has a higher 3 stories RC structures than 5 stories.

The Analysis of Lateral Movement at the Top of Retaining Wall in the Downtown Area (도심지 옹벽 상단에서의 수평변위에 관한 사례분석)

  • Bae, Yoon-Shin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.63-71
    • /
    • 2009
  • The movement of in-situ walls has become very important as construction in large cities moves upward, instead of outward. Tall structures typically have deep excavations not on1y to provide extra space for parking, but also to reduce the potential settlement of the building. These large excavations require a robust bracing system to resist the lateral earth pressures as the depth increases. Methods to predict deflections of the retaining systems are of utmost importance because wall movements allow potentia1 settlement of adjacent structures. Case studies will be analyzed and measured waI1 def1ections will be compared with predictions from empirica1ly derived charts.

  • PDF