Association rule mining techniques enable us to acquire knowledge concerning sales patterns among individual items from voluminous transactional data. Certainly, one of the major purposes of association rule mining is utilizing the acquired knowledge to provide marketing strategies such as catalogue design, cross-selling and shop allocation. However, this requires too much time and high cost to only extract the actionable and profitable knowledge from tremendous numbers of discovered patterns. In currently available literature, a number of interest measures have been devised to accelerate and systematize the process of pattern evaluation. Unfortunately, most of such measures, including support and confidence, are prone to yielding impractical results because they are calculated only from the sales frequencies of items. For instance, traditional measures cannot differentiate between the purchases in a small basket and those in a large shopping cart. Therefore, some adjustment should be made to the size of market baskets because there is a strong possibility that mutually irrelevant items could appear together in a large shopping cart. Contrary to the previous approaches, we attempted to consider market basket's size in calculating interest measures. Because the devised measure assigns different weights to individual purchases according to their basket sizes, we expect that the measure can minimize distortion of results caused by accidental patterns. Additionally, we performed intensive computer simulations under various environments, and we performed real case analyses to analyze the correctness and consistency of the devised measure.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.9
/
pp.1330-1339
/
2022
3D object detection generally aims to detect relatively large data such as automobiles, buses, persons, furniture, etc, so it is vulnerable to small object detection. In addition, in an environment with limited resources such as embedded devices, it is difficult to apply the model because of the huge amount of computation. In this paper, the accuracy of small object detection was improved by focusing on local features using only one layer, and the inference speed was improved through the proposed knowledge distillation method from large pre-trained network to small network and adaptive quantization method according to the parameter size. The proposed model was evaluated using SUN RGB-D Val and self-made apple tree data set. Finally, it achieved the accuracy performance of 62.04% at mAP@0.25 and 47.1% at mAP@0.5, and the inference speed was 120.5 scenes per sec, showing a fast real-time processing speed.
This paper proposed software equation that is relation with effort and duration based on function point (FP) software size. Existent software equation based on lines of code (LOC). LOC sees big difference according to development language and there are a lot of difficulties in software size estimation. First, considered method that change LOC to FP. But, this method is not decided definitely conversion ratio between LOC and FP by development language. Also, failed though the conversion ratio motives software formula because was not presented about specification development language. Therefore, we derived software formula directly to large project data that was developed by FP. Firstly, datas that reasonable development period is set among development projects. Secondly, FP through regression analysis about this data and effort, motived relation with FP and duration. Finally, software equation was derived from these relation. Proposed model solves application problems that LOC-based model has and has advantage that application is possible easily in business.
We study on the privacy preserving data mining, PPDM for short, by using randomization. The theoretical PPDM based on the secure multi-party computation techniques is not practical for its computational inefficiency. So we concentrate on a practical PPDM, especially randomization technique. We survey various privacy measures and study on the privacy preserving mining of association rules by using randomization. We propose a new randomization operator, binomial selector, for privacy preserving technique of association rule mining. A binomial selector is a special case of a select-a-size operator by Evfimievski et al.[3]. Moreover we present some simulation results of detecting an appropriate parameter for a binomial selector. The randomization by a so-called cut-and-paste method in [3] is not efficient and has high variances on recovered support values for large item-sets. Our randomization by a binomial selector make up for this defects of cut-and-paste method.
KIPS Transactions on Software and Data Engineering
/
v.6
no.2
/
pp.103-116
/
2017
In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner, which can derive new qualitative spatial knowledge representing both topological and directional relationships between two arbitrary spatial objects in efficient way using Aparch Spark SQL. Apache Spark SQL is well known as a distributed parallel programming environment which provides both efficient join operations and query processing functions over a variety of data in Hadoop cluster computer systems. In our spatial reasoner, the overall reasoning process is divided into 6 jobs such as knowledge encoding, inverse reasoning, equal reasoning, transitive reasoning, relation refining, knowledge decoding, and then the execution order over the reasoning jobs is determined in consideration of both logical causal relationships and computational efficiency. The knowledge encoding job reduces the size of knowledge base to reason over by transforming the input knowledge of XML/RDF form into one of more precise form. Repeat of the transitive reasoning job and the relation refining job usually consumes most of computational time and storage for the overall reasoning process. In order to improve the jobs, our reasoner finds out the minimal disjunctive relations for qualitative spatial reasoning, and then, based upon them, it not only reduces the composition table to be used for the transitive reasoning job, but also optimizes the relation refining job. Through experiments using a large-scale benchmarking spatial knowledge base, the proposed reasoner showed high performance and scalability.
Recently, there is a need to produce a large forged part for the flight, shipping, some energies, and military industries, etc. Therefore, an open die forging technique of cast ingots is required to obtain higher quality of large size forged parts. Cogging process is one of the primary stages in many open die forging processes. In the cogging process prior to some open die forging processes, internal cavities have to be eliminated for defect-free. The present work is concerned with the elimination of the internal cavities in large ingots so as to obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis is performed to investigate the overlap defect of cast ingots during cogging stage. The measured flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}-3D$. The calculated results of cavity closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.6
/
pp.1143-1148
/
2017
Currently, Artificial Intelligence and Deep Learning are rising as hot social issues, and these technologies are applied to various fields. A good method among the various algorithms in Artificial Intelligence is Convolutional Neural Networks. Convolutional Neural Network is a form that adds Convolution Layers to Multi Layer Neural Network. If you use Convolutional Neural Networks for small amount of data, or if the structure of layers is not complicated, you don't have to pay attention to speed. But the learning should take long time when the size of the learning data is large and the structure of layers is complicated. In these cases, GPU-based parallel processing is frequently needed. In this paper, we developed Convolutional Neural Networks using CUDA, and show that its learning is faster and more efficient than learning using some other frameworks or programs.
Kim, Young-Back;Kim, Tae-Ho;Lee, Dae-Gyu;Kim, Jae-Joon
Journal of Internet Computing and Services
/
v.11
no.2
/
pp.143-153
/
2010
When providing high quality panoramic video across the Internet, mobile communications, and broadcasting areas, it requires a suitable video codec that satisfies both high-compression efficiency and random access functionality. The users must have high-compression efficiency in order to enable video streaming of high-volume panoramic data. Random access allows the user to move the viewpoint and direction freely. In this paper, we propose the parallel processing scheme under cell units in order to improve the performance of streaming service for large screen panoramic video in 10Mbps bandwidths based on H.264/AVC with high compression rate. This improved algorithm divides a screen composed of cells less than $256{\times}256$ in size, encodes it, and decodes it with the cells in the present view. At this point, encoding/decoding is parallel processed by the present cell units. Also, since the cells only included in the present view are packed and transmitted, the possible processing of not extricating blocks is proven by experiment.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.178-179
/
2018
Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.
In this paper, we suggest an algorithm that allows us to extract the important obbject from motion pictures and then replace the background with arbitrary images. The suggested technique can be used not only for protecting privacy and reducing the size of data to be transferred by removing the background of each frame, but also for replacing the background with user-selected image in video communication systems including mobile phones. Because of the relatively large size of image data, digital image processing usually takes much of the resources like memory and CPU. This can cause trouble especially for mobile video phones which typically have restricted resources. In our experiments, we could reduce the requirements of time and memory for processing the images by restricting the search area to the vicinity of major object's contour found in the previous frame based on the fact that the movement of major object is not wide or rapid in general. Specifically, we detected edges and used the edge image of the initial frame to locate candidate-object areas. Then, on the located areas, we computed the difference image between adjacent frames and used it to determine and trace the major object that might be moving. And then we computed the contour of the major object and used it to separate major object from the background. We could successfully separate major object from the background and replate the background with arbitrary images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.