최근 데이터를 활용한 분석에 대한 수요와 함께 분석 데이터인 지식 그래프의 크기는 점차 증가하여, 웹에서 수집한 데이터를 지식 그래프로 추출하였을 때 약 820억개의 엣지(Edge)를 가지는 수준까지 도달하였다. 많은 지식 그래프들은 웹 자원에 대한 메타데이터를 표현하기 위한 W3C 표준인 RDF(Resource Description Framework) 형식으로 표현되며, RDF 특성으로 인해 기존의 RDF 저장소들은 대량 RDF 데이터를 압축하고 저장할 때 처리 시간의 오버헤드가 발생하는 문제점을 가진다. 본 논문은 이러한 문제점을 개선하기 위해, 맵리듀스를 사용하여 대량 RDF 데이터를 정수 ID로 압축 변환하고, 수직 분할하여 저장하는 방법을 제안한다. 본 논문에서 제안한 방법은 RDF-3X와 비교하였을 때 최대 25.2배, H2RDF+와 비교하였을 때 최대 3.7배까지의 높은 성능 향상을 보였다.
멀티캐스트 통신에서 그룹에 새로운 멤버가 가입하거나 기존의 멤버가 탈퇴하는 경우 멤버들이 사용중인 그룹 키는 갱신되어야 한다. 이러한 절차는 완전 전방향과 후방향 비밀성을 보장하기 의해 필요하다(8). 불행하게도, 빈번한 멤버쉽이 변경되는 대규모 그룹에서의 키 갱신은 그룹을 확장하는데 커다란 장애가 된다. 본 논문에서는 대규모 동적 그룹에서 그룹 키를 효율적으로 분배할 수 있는 새로운 방식을 제안한다. 기존의 안전한 멀티캐스트 프로토콜과는 달리, 제안된 프로토콜은 키 갱신의 빈도와 계산에 따른 오버헤드가 전체 그룹의 크기가 아닌 서브그룹의 크기에 따라 영향을 받기 때문에 대규모 그룹으로 확장이 가능하며, 그룹 접근 제어를 수행하는 서브그룹 관리자가 송신자에 의해 전송된 멀티캐스트 데이터에 접근할 수 없도록 하는 메카니즘을 제공한다. 또한 무선 컴퓨팅 환경에서 프라이버시를 보장할 수 있는 보안 서비스를 제공한다.
Today, we are living in the era of data and information. With the advent of Internet of Things (IoT), the popularity of social networking sites, and the development of mobile devices, a large amount of data is being produced in diverse areas. The collection of such data generated in various area is called big data. As the importance of big data grows, there has been a growing need to share big data containing information regarding an individual entity. As big data contains sensitive information about individuals, directly releasing it for public use may violate existing privacy requirements. Thus, privacy-preserving data publishing (PPDP) has been actively studied to share big data containing personal information for public use, while preserving the privacy of the individual. K-anonymity, which is the most popular method in the area of PPDP, transforms each record in a table such that at least k records have the same values for the given quasi-identifier attributes, and thus each record is indistinguishable from other records in the same class. As the size of big data continuously getting larger, there is a growing demand for the method which can efficiently anonymize vast amount of dta. Thus, in this paper, we develop an efficient k-anonymity method by using Spark distributed framework. Experimental results show that, through the developed method, significant gains in processing time can be achieved.
대용량의 저장 공간과 고속 통신망을 갖춘 고성능 저장 장치를 필요로 하는 멀티미디어 응용에서는 데이터 전달 속도와 입출력 성능을 향상시키기 위해 디스크 배열이 사용되고 있다. 디스크 배열은 구성 방법및 데이터 할당 방법등에 따라 성능의 차이를 보이므로 디스크 배열을 설계 할 때 해당 응용에 적합한 디스크 배열 특성 변수가 결정되어야 한다. 본 논문에서는 소규모 VOD 시스템의 저장 서버로서 사용될 디스크 배열의 구조를 결정하기 위한 연속 매체 파일 시스템의 데이터 불럭 크기와 입출력 요구의 크기가 주어질 때 디스크 배열 구성 디스크수, 디스크 배열 구성과 디클러스터링 정도를 권장하기 위해 시뮬레이션을 통해 성능을 평가하였다. 시뮬레 이션을 통해 6Mbps의 MPEG-2파일을 제공하는 디스크 배열의 구조는 스트라이핑 단위가 64-KB 이며, 데이터 불럭이 연속 배치되어 있는 5개의 디스크로 구성된 RAID-5가 가장 적합한 것으로 나타났다.
현재의 인공지능에서 사용되는 자연어 처리 모델은 거대하여 실시간으로 데이터를 처리하고 분석하는 것은 여러가지 어려움들을 야기하고 있다. 이런 어려움을 해결하기 위한 방법으로 메모리를 적게 사용해 처리의 효율성을 개선하는 방법을 제안하고 제안된 모델의 성능을 확인하였다. 본 논문에서 제안한 모델의 성능평가를 위해 적용한 기법은 BERT[1] 모델의 어텐션 헤드 개수와 임베딩 크기를 작게 조절해 큰 말뭉치를 나눠서 분할 처리 후 출력값의 평균을 통해 결과를 산출하였다. 이 과정에서 입력 데이터의 다양성을 주기위해 매 에폭마다 임의의 오프셋을 문장에 부여하였다. 그리고 모델을 분류가 가능하도록 미세 조정하였다. 말뭉치를 분할 처리한 모델은 그렇지 않은 모델 대비 정확도가 12% 정도 낮았으나, 모델의 파라미터 개수는 56% 정도 절감되는 것을 확인하였다.
Parallel implementation and performance assessment of the grid assembly in a structured chimera grid approach is studied. The grid assembly process, involving hole cutting and searching donor, is parallelized on the PC cluster. A message passing programming model based on the MPI library is implemented using the single program multiple data(SPMD) paradigm. The coarse-grained communication is optimized with the minimized memory allocation because that the parallel grid assembly can access the decomposed geometry data in other processors by only message passing in the distributed memory system such as a PC cluster. The grid assembly workload is based on the static load balancing tied to flow solver. A goal of this work is a development of parallelized grid assembly that is suited for handling multiple moving body problems with large grid size.
네트워크에서 데이터의 보안은 암호화에 의해 제공된다. 최근 영상이나 비디오와 같은 대용량의 데이터 파일의 암호화의 비용 및 복잡성을 줄이기 위한 방안으로 선택적 암호화가 제안되었다. 본 논문에서는 허프만 코딩으로 압축된 데이터의 암호화 방안을 제안하고 그 성능에 대해 논한다. 허프만 코드에 적용 가능한 단순한 선택적 암호화 방법을 제안하고 불안전한 채널에서 암호화 방법의 효율성에 대해 논의한다. 암호화 과정과 데이터 압축 과정이 하나로 결합될 수 있으며 그렇게 함으로서 데이터를 압축하고 암호화하는 과정을 간략화 하고 시간을 줄일 수 있다.
This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.
Pattern matching algorithm is widely used in many application fields such as bio-informatics, intrusion detection, etc. Among many string matching algorithms, KMP (Knuth-Morris-Pratt) algorithm is commonly used because of its fast execution time when using large texts. However, the processing speed of KMP algorithm is also limited when the text size increases significantly. In this paper, we propose a high throughput parallel KMP algorithm considering CPU-GPU memory hierarchy based on OpenCL in GPGPU (General Purpose computing on Graphic Processing Unit). We focus on the optimization for the allocation of work-times and work-groups, the local memory copy of the pattern data and the failure table, and the overlapping of the data transfer with the string matching operations. The experimental results show that the execution time of the optimized parallel KMP algorithm is about 3.6 times faster than that of the non-optimized parallel KMP algorithm.
비디오 스트림들은 사용된 압축 알고리듬의 구조와 화면의 복잡도 등에 따라 다양한 형태의 트래픽이 발생함으로, 송신측과 수신측 사이의 자원할당을 어렵게 할 뿐만 아니라, 현재의 인터넷과 같은 패킷 통신망에서는 연속적인 재생을 어렵게 한다. 따라서, 본 논문에서는 멀티스트림을 이용한 비디오 스트림의 평활화 방법을 제안한다. 제안한 방법은 스트림의 형태에 따라 LDU(logical data unit)를 정의한 후 일정한 크기로 다수의 스트림으로 생성하여 전송함으로써, 평활화와 선반입 과정에서 발생하는 버퍼링 시간을 줄일 수 있을 뿐만 아니라 네트워크의 지터에도 강하면, 클라이언트의 대역폭을 최대한 활용할 수 있는 효율적인 전송 특성을 얻을 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.