The paper is to build recommendation systems leveraging Deep Learning and Big Data platform, Spark to predict item ratings of the Amazon e-commerce site. Recommendation system in e-commerce has become extremely popular in recent years and it is very important for both customers and sellers in daily life. It means providing the users with products and services they are interested in. Therecommendation systems need users' previous shopping activities and digital footprints to make best recommendation purpose for next item shopping. We developed the recommendation models in Amazon AWS Cloud services to predict the users' ratings for the items with the massive data set of Amazon customer reviews. We also present Big Data architecture to afford the large scale data set for storing and computation. And, we adopted deep learning for machine learning community as it is known that it has higher accuracy for the massive data set. In the end, a comparative conclusion in terms of the accuracy as well as the performance is illustrated with the Deep Learning architecture with Spark ML and the traditional Big Data architecture, Spark ML alone.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.3
/
pp.63-72
/
2021
Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.183-183
/
2021
Deep learning methods and their application have become an essential part of prediction and modeling in water-related research areas, including hydrological processes, climate change, etc. It is known that application of deep learning leads to high availability of data sources in hydrology, which shows its usefulness in analysis of precipitation, runoff, groundwater level, evapotranspiration, and so on. However, there is still a limitation on microclimate analysis and prediction with deep learning methods because of deficiency of gauge-based data and shortcomings of existing technologies. In this study, a real-time rainfall prediction model was developed from a sky image data set with convolutional neural networks (CNNs). These daily image data were collected at Chung-Ang University and Korea University. For high accuracy of the proposed model, it considers data classification, image processing, ratio adjustment of no-rain data. Rainfall prediction data were compared with minutely rainfall data at rain gauge stations close to image sensors. It indicates that the proposed model could offer an interpolation of current rainfall observation system and have large potential to fill an observation gap. Information from small-scaled areas leads to advance in accurate weather forecasting and hydrological modeling at a micro scale.
Journal of Information Science Theory and Practice
/
v.10
no.spc
/
pp.112-122
/
2022
Food security and its sovereignty have become among the most important key issues due to changes in the international situation. Regarding these issues, many countries now give attention to smart agriculture, which would increase production efficiency through a data-based system. The Korean government also has attempted to promote smart agriculture by 1) implementing the agri-food ICT (information and communications technology) policy, and 2) increasing the R&D budget by more than double in recent years. However, its endeavors only centered on large-scale farms which a number of domestic farmers rarely utilized in their farming. To promote smart agriculture more effectively, we diagnosed the government R&D trends of smart agriculture based on NTIS (National Science and Technology Information Service) data. We identified the research trends for each R&D period by analyzing three pieces of information: the regional information, research actor, and topic. Based on these findings, we could suggest systematic R&D directions and implications.
Yu, Haiyang;Cai, Yongquan;Kong, Shanshan;Ning, Zhenhu;Xue, Fei;Zhong, Han
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.10
/
pp.5039-5061
/
2017
Cloud storage becomes a new trend that more and more users move their data to cloud storage servers (CSSs). To ensure the security of cloud storage, many cloud auditing schemes are proposed to check the integrity of users' cloud data. However, most of them are based on public key infrastructure, which leads to complex certificates management and verification. Besides, most existing auditing schemes are inefficient when user uploads a large amount of data or a third party auditor (TPA) performs auditing for multiple users' data on different CSSs. To overcome these problems, in this paper, we propose an efficient and secure auditing scheme based on identity-based cryptography. To relieve user's computation burden, we introduce a proxy, which is delegated to generate and upload homomorphic verifiable tags for user. We extend our auditing scheme to support auditing for dynamic data operations. We further extend it to support batch auditing in multiple users and multiple CSSs setting, which is practical and efficient in large scale cloud storage system. Extensive security analysis shows that our scheme is provably secure in random oracle model. Performance analysis demonstrates that our scheme is highly efficient, especially reducing the computation cost of proxy and TPA.
In order to spatially interpolate the near-surface temperature (Ta) values, satellite and reanalysis methods were used from previous studies. Accuracy of reanalysis Ta was generally better than that of satellite-based Ta, but spatial resolution of reanalysis Ta was large to use at local scale studies. Our purpose is to evaluate accuracy of reanalysis Ta and satellite-based Ta according to elevation from April 2011 to March 2012 in Northeast Asia that includes various topographic features. In this study, we used reanalysis data that is ERA-Interim produced by European Centre for Medium-Range Weather Forecasts (ECMWF), and estimated satellite-based Ta using Digital Elevation Meter (DEM), Normalized Difference Vegetation Index (NDVI), difference between brightness temperature of $11{\mu}m$ and $12{\mu}m$, and Land Surface Temperature (LST) data. The DEM data was used as auxiliary data, and observed Ta at 470 meteorological stations was used in order to evaluate accuracy. We confirmed that the accuracy of satellite-based Ta was less accurate than that of ERA-Interim Ta for total data. Results of analyzing according to elevation that was divided nine cases, ERA-Interim Ta showed higher accurate than satellite-based Ta at the low elevation (less than 500 m). However, satellite-based Ta was more accurate than ERA-Interim Ta at the higher elevation from 500 to 3500 m. Also, the width of the upper and lower quartile appeared largely from 2500 to 3500 m. It is clear from these results that ERA-Interim Ta do not consider elevation because of large spatial resolution. Therefore, satellite-based Ta was more effective than ERA-Interim Ta in the regions that is range from 500 m to 3500 m, and satellite-based Ta was recommended at a region of above 2500 m.
The delay due to congestion has recently attracted widespread attention with the analysis of over-all operation at the port. But, the complexity of the situation is evident in view of the large number of factors which impinge on the considerable end. Queueing theory is applicable to a large scale transportation system which is associated with arrivals of vessels in a large port. The attempt of this paper is to make an extensive analysis of the port transport system and its economic implications from the viewpoint that port is one of the physical distribution facilities and a kind of queueing system which includes ships and cargoes as port customer. By analyzing the real data on the Port of Pusan, it is known that this port can be represented as a set of multi-channel with identical setof Poisson arrival and Erlang service time, and also it is confirmed that the following formula is suitable to calculate the mean delay in this port, namely, $W_4={\frac{\rho}{\lambda(1-\rho)} {\frac{e_N(\rho{\cdot}N)}{D_{N-1}(\rho{\cdot}N)}$ where, ${\lambda}$: mean arrival rate $\mu$: mean servicing rate; N: number of servicing channel; ${\rho}$: utillization rate (${\lambda}/N{\mu}$) $e_N$: the Poisson function Coming to grips with the essentials of the cost of delay due to congestion, a simple ship journey cost model is adopted and the operating profit sensitivity to variation in port time is examined, and for purpose of a future development for port princing service the marginal cost is approximately calculated on the basis of queueing theory.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.5
/
pp.41-51
/
1996
In this paper, anew parallel processing system based on a cluster architecture which provides scalability of a parallel processing system while maintains shared memory multiprocessor characteristics is proposed. In recent days low cost, high performnce microprocessors have led to construction of large scale parallel processing systems. Such parallel processing systems provides large scalability but are mainly used for scientific applications which have large data parallelism. A shared memory multiprocessor system like TICOM is currently used as aserver for the commercial application, however, the shared memory multiprocessor system is known to have very limited scalability. The proposed architecture can support scalability and performance of the parallel processing system while it provides adaptability for the commerical application, hence it can overcome the limitation of the shared memory multiprocessor. The architecture and characteristics of the proposed system shall be described. A proprietary hierarchical crsossbar network is designed for this system, of which the protocol, routing and switching technique and the signal transfer technique are optimized for the proposed architecture. The design trade-offs for the network are described in this paper and with simulation usihng the SES/workbench, it is explored that the network fits to the proposed architecture.
Transactions of the Korean Society of Mechanical Engineers B
/
v.20
no.9
/
pp.3015-3029
/
1996
The notion of effective transport property of a heterogeneous medium implies that the medium is large enough that the ergodic theorem holds and local fluctuation of the property can be neglected. In case that the medium is not large enough compared to its characteristic microstructure length scale, the effective property fluctuates and differs from the value of the medium being large enough. As a representative transport phenomenon, diffusion was considered and the fluctuation of varying effective diffusion property, diffusion coarseness $C_k$, was defined as a quantifying parameter. Scaled effective diffusion property, $^*$>/k$_1$ and $C_k$ were computed for the two phase random media consisting of matrix of diffusion coefficient k$_1$ and spheres of diffusion coefficient k$_2$. Numerical simulations were performed by use of the so-called first passage time technique and data were collected for existing microstructure models of hard spheres(HS), overlapping spheres(OS) and penetrable concentric shells(PCS).
Large eddy simulation (LES) is increasingly used as a tool for studying the dynamics of turbulence in combustion chamber flows due to the promise of wider generality and more accurate results compared to Reynolds averaged Navier-Stokes(RANS) models. This study presents the appropriate subgrid-scale(SGS) model in LES for predicting the turbulent flow field in the internal combustion engine. The study of the effects of model and numerical parameters such as discretization scheme, initial condition, time step and SGS model was performed. The results of LES using the SGS model were found to be in the good agreement with experimental data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.