• Title/Summary/Keyword: Large Scale Data

Search Result 2,796, Processing Time 0.034 seconds

Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve (유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정)

  • Kim, Dong Young;Yoon, Chun Gyeong;Rhee, Han Pil;Choi, Jae Ho;Hwang, Ha Sun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

Outcomes of Mechanical Thrombectomy in Patients with Large Diffusion-Weighted Imaging Lesions

  • Cho, Yong-Hwan;Choi, Jae Hyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.22-29
    • /
    • 2022
  • Objective : Despite many advancements in endovascular treatment, the benefits of mechanical thrombectomy (MT) in patients with large infarctions remain uncertain due to hemorrhagic complications. Therefore, we aimed to investigate the efficacy and safety of recanalization via MT within 6 hours after stroke in patients with large cerebral infarction volumes (>70 mL). Methods : We retrospectively reviewed the medical data of 30 patients with large lesions on initial diffusion-weighted imaging (>70 mL) who underwent MT at our institution within 6 hours after stroke onset. Baseline data, recanalization rate, and 3-month clinical outcomes were analyzed. Successful recanalization was defined as a modified treatment in cerebral ischemia score of 2b or 3. Results : The recanalization rate was 63.3%, and symptomatic intracerebral hemorrhage occurred in six patients (20%). The proportion of patients with modified Rankin Scale (mRS) scores of 0-3 was significantly higher in the recanalization group than in the non-recanalization group (47.4% vs. 9.1%, p=0.049). The mortality rate was higher in the non-recanalization group, this difference was not significant (15.8% vs. 36.4%, p=0.372). In the analysis of 3-month clinical outcomes, only successful recanalization was significantly associated with mRS scores of 0-3 (90% vs. 50%, p=0.049). The odds ratio of recanalization for favorable outcomes (mRS 0-3) was 9.00 (95% confidence interval, 0.95-84.90; p=0.055). Conclusion : Despite the risk of symptomatic intracerebral hemorrhage, successful recanalization via MT 6 hours after stroke may improve clinical outcomes in patients with large vessel occlusion.

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

A Research on Process of Estimation about Frequency and Loss of Risk by distribution of Probability (확률분포에 의한 리스크 빈도수와 손실규모 추정 프로세스 연구)

  • Lee, Young-Jai;Lee, Seong-Il
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.2
    • /
    • pp.67-82
    • /
    • 2008
  • Risk that breed large size disaster is happening variously for cause at social. natural a management. Incidence and damage scale are trend that increase rapidly than past. In these circumstance, to keep operational continuity of organization, area, society, risk management action that establish systematic counter measure estimating and analyze occurrence possibility and expectation damage of risk is essential indispensable issue and the best countermeasure. Risk management action does by main purpose establish optimum disaster reduction countermeasure. To deduce various countermeasure, process that estimate and analyze occurrence possibility and expectation damage of risk is essential indispensable issue. Therefore, this paper studies process design that can presume risk occurrence frequency and damage scale through distribution of probability.

  • PDF

A Study on the Development of PMO Cost Estimation Model (PMO 대가 산정모형의 개발)

  • Seo, Yong Won;Lee, Duck Hee
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.169-188
    • /
    • 2014
  • Recently the complexity and difficulty of the IT projects are increasing due to technological and environmental risks, resulting in the adoption of PMO(Project Management Office) onto IT project management practices, including public area projects. For example, the Korean government regulated the application of PMO onto large scale public IT projects. However, since there has been no reliable method to estimate the cost to execute PMOs, a PMO cost evaluation model to support the budget and cost planning of PMO projects is required. Thus, the purpose of this research is to develop a systematic cost evaluation model for PMO projects. We identified the dimensions that determine the PMO execution cost to be the scale of the subject project, the technical difficulty level of the subject project, and the tasks to be executed in the PMO project. Based on the determinants, the PMO execution cost model were developed from historical data and experts opinion. Upon verification, the validity of the developed model has high level of consistency compared with their experiences of real PMO project costs.

3-D Dynamic groundwater-river interaction modeling incorporating climate variability and future water demand

  • Hong, Yoon-Seok Timothy;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.67-74
    • /
    • 2008
  • The regional-scale transient groundwater-river interaction model is developed to gain a better understanding of the regional-scale relationships and interactions between groundwater and river system and quantify the residual river flow after groundwater abstraction from the aquifers with climate variability in the Waimea Plains, New Zealand. The effect of groundwater abstraction and climate variability on river flows is evaluated by calculating river flows at the downstream area for three different drought years (a 1 in 10 drought year, 1 in 20 drought year, and 1 in 24 drought year) and an average year with metered water abstraction data. The effect of future water demand (50 year projection) on river flows is also evaluated. A significant increase in the occurrence of zero flow, or very low flow of 100 L/sec at the downstream area is predicted due to large groundwater abstraction increase with climate variability. Modeling results shows the necessity of establishing dynamic cutback scenarios of water usage to users over the period of drought conditions considering different climate variability from current allocation limit to reduce the occurrence of low flow conditions at the downstream area.

  • PDF

Genomic Applications of Biochip Informatics (유전체 발현의 정보학적 분석과 응용)

  • Kim, Ju-Han
    • KOGO NEWS
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2005
  • Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic expression data transforms the challenges m biomedical research into ones in bioinformatics. Clinical informatics has long developed technologies to imp개ve biomedical research by integrating experimental and clinical information systems. Biomedical informatics, powered by high throughput techniques, genomic-scale databases and advanced clinical information system, is likely to transform our biomedical understanding forever much the same way that biochemistry did to biology a generation ago. The emergence of healthcare and biomedical informatics revolutionizing both bioinformatics and clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics and prognostics.

  • PDF

Experimental Study on Turbulent Structure of Flow over a Micro Riblet Plate (미세 Riblet 평판에서의 난류구조 변화에 관한 실험적 연구)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.375-376
    • /
    • 2006
  • Turbulent structure of a boundary-layer over a flat plate coated with micro riblet film(MRF) has been investigated experimentally. The turbulent structure was visualized using a dynamic particle image velocimetry (Dynamic PIV) system. We identified the vortex structures from 2-D velocity field data by applying the complex eigenvalue definition. The velocity field images acquired by using the complex eigenvalue definition showed the whole 2-D vortex structures clearly. In addition, the spatial distributions of small-scale vortices as well as large-scale vortices were obtained with high accuracy. The difference of vortex structures between the MRF coated flat plate and the smooth flat plate was analysed in detail. With varying upstream flow speed, the characteristics of vortex structure over the MRF coated flate plate was compared with those over the smooth flat plate.

  • PDF

System-Level Performance of Spread Spectrum-Based Add-on Service Overlaid onto the Existing Terrestrial Digital Multimedia Broadcast Band

  • Yoon, Seokhyun;Lim, Bo-Mi;Lee, Yong Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.492-502
    • /
    • 2012
  • We consider an overlaid broadcast service, where a spread spectrum (SS)-based broadcast signal is overlaid onto the existing terrestrial Digital Multimedia Broadcasting (T-DMB) band. The system is similar to the augmented data transmission in the ATSC DTV, for which it was investigated mostly in terms of link level performance, such as bit error rate. Our focus in this paper is on the system-level performances. More specifically, utilizing both a large scale path loss and a small scale fading channel model, the primary objective is to explore the tradeoff between the coverage and the achievable rate of the overlaid service and, finally, to determine the achievable rate in the overlaid service for marginal coverage reduction in the existing broadcast service. The analytical and simulation results show that an SS-based add-on service of 10 kbps to 20 kbps can co-exist with the T-DMB service while resulting in only a marginal degradation in T-DMB coverage (for example, less than one percent reduction).

Testing and finite element modeling of stressed skin diaphragms

  • Liu, Yang;Zhang, Qilin;Qian, Weijun
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2007
  • The cold formed light-gauge profiled steel sheeting can offer considerable shear resistance acting in the steel building frame. This paper conducted the full-scale test on the shear behavior of stressed skin diaphragm using profiled sheeting connected by the self-tapping screws. A three-dimensional finite element model that simulates the stressed skin diaphragm was developed. The sheet was modeled using thin element model while the supporting members were simulated using beam elements. Fasteners were represented in the numerical model as equivalent springs. A joint test program was conducted to characterize the properties of these springs and results were reported in this study. Finite element model of the full-scale test was analyzed by use of the ANSYS package, considering nonlinearity caused by the large deflection and slip of fasteners. The experimental data was compared with the results acquired by the EUR formulas and finite element analysis.