• 제목/요약/키워드: Large Electric Motor

검색결과 131건 처리시간 0.022초

고압(高壓) 대용량(大容量) 수중(水中) 전동기(電動機) 개발(開發) (SUBMERSIBLE PUMP MOTOR (500KW-6P. 200KW-6P 3300V))

  • 피재년;홍성일;배상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.64-68
    • /
    • 1991
  • This paper presents development of the submersible pump-motor with a high voltage and large capacity. Today many manufacturers are fabricated submersible pump-motor in this country. But only there are small or midium capacity pump-motor of low voltage. Also the condition of large flow rated it will not be caplable of carrying out the task of which various for reason geographically and seasonably. In order to be equal to the task it will be increase its capacity. Recently we were development that the large capacity with high voltage submersible pump-motor.

  • PDF

대형 고속프레스 플런저 구조와 동적 하사점 변위량에 대한 연구 (A study on the Large High Speed Press Plunger Structure and Dynamic Bottom Dead Center Displacement)

  • 김승수;윤재웅
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.40-45
    • /
    • 2022
  • The EV electric vehicle market is growing rapidly worldwide. An electric vehicle means a vehicle that uses energy charged through an electricity source as power. The precision of the press is important to mass-produce the drive motor, which is a key component of the electric vehicle. The size of the driving motor is increasing, and The size of the mold is also growing. In this study, the precision of large high-speed presses for mass production of driving motors was measured. A study was conducted on the measurement method of press and the analysis of measurement data. A drive motor is a component that transmits power by converting electrical energy into kinetic energy. EV driven motors have key material properties to improve efficiency. The material properties are the thickness of the material. As a method for improving performance, use a 0.2mm thin steel sheet. Mold is also becoming larger. As the mold grows, the size of the high-speed press for mass production of the driving motor is also increasing. Also, the precision of the press is the most important because it uses a thin iron plate material. So the importance of large press precision is being emphasized. In this study, the effect of large high-speed press structure on precision was verified

고추력 저가동률 리니어모터에 관한 연구 (Large Thrust Linear Motor for Low-duty-cycle Operation)

  • 방영봉;이경민
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.161-171
    • /
    • 2002
  • This paper presents a linear motor, which generates large thrust with a low operating rate. In industrial fields there is a need for actuators that work with a low duty cycle but generate large thrusts. An example of such a case is provided by the actuators for ejector mechanisms in electric injection molding machines. The ordinary LSM (linear synchronous motor) is unsuitable for this large-thrust and low-operating-rate usage, because of its large size and high cost. This paper contains experimental results on linear motors that can generate large thrusts for a short time, and which can be cheaply produced. The described linear motor could be contained space of $250mm \times250mm\times 250mm$ and generate a maximum thrust of about 20000 N at a current of 250 A.

Initial Pole Position Estimation of Surface PM-LSM

  • Kim, Tae-Woong;Junichi Watanabe;Sumitoshi Sonoda;Junji Hirai
    • Journal of Power Electronics
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2001
  • The elimination of a pole sensor is desirable due to the low-cost requirement, the compactness, and the applied drives. This paper proposes the algorithm for the initial pole-position estimation of a surface permanent magnet linear synchronous motor (PM-LSM), which is carried out under the closed loop control without a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole position (IPP) is estimated by the trigonometric function of the two reference currents. The effectiveness of the proposed algorithm is confirmed by testing a surface PM-LSM with large disturbance, which result shows that IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction is existed.

  • PDF

Dynamometer Test for the CVT System using Spring

  • Kwon, Young-Woong;Yang, Seung-Bok
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.222-228
    • /
    • 2022
  • As a means to cope with the climate change crisis caused by global warming, automobile manufacturers continue to make efforts to use the driving energy of vehicles as electricity. As a result, parts industry such as battery, motor, and controller are attracting attention. China is often seen in large cities, with electric vehicles such as electric bicycles, electric motorcycles, and small electric vehicles popularized and commercialized, mainly in large cities. However, small electric vehicles are not popular in Korea, which is why the country's topography is high in hills. In order to drive the hilly domestic roads, power performance including vehicle climbing ability should be improved. In order to improve the power performance and the climbing capacity of small electric vehicles, the capacity of the motor should be increased. However, when the performance of the motor is improved, the weight of the motor becomes heavy and the price competitiveness is likely to decrease. In addition, in order to operate a high-performance motor, the power consumption of the battery is rapidly increased, so various problems must be solved. In order to commercialize a small electric vehicle for one or two people who do not emit harmful exhaust gas to the human body in a hilly domestic terrain, it is effective to have a separate transmission system. In this study, we were conducted dynamometer test to produce a continuously variable transmission(CVT) system prototype using a spring that can be applied to a small electric vehicle and to install a CVT system prototype manufactured in a small electric vehicle. The dynamometer test results showed that the maximum speed performance, acceleration performance, and climbing performance were improved.

Noise Lowering for a Large Variable Speed Range Use Permanent Magnet Motor by Frequence Shift and Structural Response Evaluation of Electromagnetic Forces

  • Arata, Masanori;Takahashi, Norio;Fujita, Masafumi;Mochizuki, Motoyasu;Araki, Takashi;Hanai, Takashi
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.67-74
    • /
    • 2012
  • According to electrical output up rating of a permanent magnet motor and request to operate for a large variable speed range, resonance between structural natural vibration and electromagnetic force inside the motor can take place and make noise. This paper describes the mechanism of a resonance between them and noise lowering procedure by frequency shift when they are applied to the reluctance torque largely employed new motor named Permanent magnet Reluctance Motor (PRM).

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

신재생 에너지 적용을 위한 고효율 영구자석 동기 전동/발전기의 해석 및 설계 (Analysis and Design of high-efficiency Permanent Magnet Synchronous Motor/Generator for Renewable Energy Application)

  • 유대준;김일중
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.955-964
    • /
    • 2011
  • In renewable energy system such as flywheel energy storage system, wind power and solar power, the motor/generator is the important key for offering the electric energy to the electric loads. For example, the heavy and large flywheel is rotated by electromagnetic torque of pemanent magnet synchronous motor (PMSM) and, in case of a breakdown of electric current, the PMSM used as generator supplies electric energy for the various electric utilities using mechanical rotation energy of the flywheel. Thus, design of a motor/generator should be performed in effort to reduce cogging torque and electromagnetic loss for high efficiency. In our paper, a slotless permanent magnet synchronous motor/generator (SPMSM/G) with output power 15kW at the rotor speed 18000rpm is designed from electromagnetic analysis and dynamic performance analysis. In analytical approach, design parameters such as back electro-motive force (back EMF), inductance and electromagnetic torque are derived from analytical method which is one of the electromagnetic analysis method. And using the design parameters, this paper deal with system design considering the driving characteristics and electric load in required power. Finally, the analytical results are verified by the experiment and finite element method (FEM).

대용량 유도전동기 기동 개선에 관한 연구 (A Study on Improving High-Power Induction Motor Starting)

  • 손석금
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.178-184
    • /
    • 2016
  • 본 논문에서는 전력에너지를 사용하는 산업체의 전동기용량이 점차 증가하고 있다. 전동기는 기동시 기동전류로 전압강하가 발생한다. 이 기동전류가 전력계통에서 대형 전동기 기동 시 전압강하로 기동이 어려워 인접한 전력계통에 나쁜 영향을 미치게 된다. 또한 전동기는 부하의 크기에 따라 토크를 내는 것으로 토크의 크기에 따라 속도가 변하고 속도는 전동기 기동에 중요하다. 일반적으로 변압기나 비상발전기로부터 전동기까지의 거리가 짧으며 전동기용량이 작아 기동에 대한 어려움이 없으나 산업설비 등에 많이 이용되는 대용량 전동기의 기동특성에 대한 이론과 실제의 운전특성을 측정 분석하였다. 따라서 이번 연구는 전동기 기동 시 속도와 토크에 관계와 대용량 전동기 기동을 위한 분석과 전동기 기동 해석에 대해 연구하였다.