• Title/Summary/Keyword: Large Displacement

Search Result 1,399, Processing Time 0.024 seconds

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

Large-Displacement Electromagnetic Actuators with the Meander Springs Partially Exposed to Magnetic Field (부분적으로 자기장에 노출된 굴곡형 스프링을 이용한 대변위 전자기력 구동기)

  • Seo, Dae-Geon;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.481-486
    • /
    • 2012
  • We discuss the design, fabrication, and testing of a large-displacement electromagnetic actuator with the meander springs partially exposed to a magnetic field. We compared two prototypes: a prototype (F) of the conventional actuator with the meander springs fully exposed to a magnetic field and a prototype (P) of the proposed actuator with the meander springs partially exposed to a magnetic field. For a 5 Hz square input current varying from 10.40 mA, P showed an increase of $16.9{\pm}1.2%$ in the amplitude, which was greater than the increase in the case of F. Thus, we experimentally demonstrated the large-displacement actuation performance of the proposed actuator in a small volume and at low currents (below 40 mA). The proposed electromagnetic actuator can be used for low-power and large-displacement manipulation of optical switches and optical choppers.

Further seismic displacement PSDF results

  • Morales, C.A.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.663-666
    • /
    • 2010
  • The spectral content of ground displacement of the 10 largest last California earthquakes is studied. Specifically, the power spectral density function of the critical horizontal-component record of the closest-to-epicenter station is analyzed in each case. The results permit to state that horizontal ground displacement is a narrow-band process. This fact was previously noticed while trying to solve the large-base-displacement problem in isolated structures and it was fundamental in the solution of this issue; however, these preliminary results were limited in number to enable a statement like the foregoing one. Thus, the broader results presented herein were necessary.

Displacement Error Estimation of a High-Precision Large-Surface Micro-Grooving Machine Based on Experimental Design Method and Finite Element Analysis (실험계획법과 유한 요소해석을 이용한 초정밀 대면적 미세 그루빙 머신의 변위 오차 예측)

  • Lee, Hee-Bum;Lee, Won-Jae;Kim, Seok-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.703-713
    • /
    • 2011
  • In this study, to minimize trial and error in the design and manufacturing processes of a high-precision large-surface micro-grooving machine which is able to fabricate the molds for 42 inch LCD light guide panels, the effects of the structural deformation of the micro-grooving machine according to the positions of the X-axis, Y-axis and Z-axis feed systems were examined on the tool tip displacement errors associated with the machining accuracy. The virtual prototype (finite element model) of the micro-grooving machine was constructed to include the joint stiffnesses of the hydrostatic bearings, hydrostatic guideways and linear motors, and then the tool tip displacement errors were measured from the virtual prototype. Especially, to establish the prediction model of the tool tip displacement errors, which was constructed using the positions of the X-axis, Y-axis and Z-axis feed systems as independent variables, the response surface method based on the central composite design was introduced. The reliability of the prediction model was verified by the fact that the tool tip displacement errors obtained from the prediction model coincided well those measured from the virtual prototype. And the causes of the tool tip displacement errors were identified through the analysis of interactions between the positions of the X-axis, Y-axis and Z-axis feed systems.

The Prediction of Nonlinear behavior of Double Coil Shape Memory Alloy Spring (이중 나선 구조 형상기억합금 스프링 거동 예측)

  • Lee, Jong-Gu;Ahn, Sung-Min;Cho, Kyu-Jin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • The recovery force and displacement occur due to the phase transformation from the martensite phase to the austenite phase induced by the mechanical loading or thermal loading. These recovery force and displacement depend on an initial geometrical configuration of SMAs and loading conditions. Although the SMAs generally generates large recovery forces, the sufficient recovery displacement cannot be expected without a proper design strategy. The functionality of SMAs is limited due to the unbalance between the large recovery force and the small recovery displacement. This study suggests the double coil SMA spring in order to amplifying the recovery displacement induced by the phase transformation. By predicting the recovery displacement of doble coil SMA springs and one coil SMA springs induced by thermal loading, we show that the double coil SMA spring not only mitigate the unbalance of performance but also have a large recovery displacement for its recovery force than one coil SMA spring.

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION (부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구)

  • Lee, Seon-A;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Flow Analysis in Positive Displacement Micro-Hydro Turbine and Development of Low Pulsation Turbine

  • Kurokawa, Junichi;Matsui, Jun;Choi, Young-Do
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • In order to extract micro hydropower in the very low specific speed range, a Positive Displacement Turbine (PDT) was proposed and steady performance was determined experimentally. However, the suppression of large pressure pulsation is inevitable for practical application of PDT. The objective of the present study is to reveal the mechanism and the characteristics of pressure pulsation in PDT by use of CFD and to suppress the pressure pulsation. Unsteady CFD analysis has revealed that large pressure pulsation is caused by large variation of rotational speed of the following rotor, while the driving rotor, which is output rotor, keeps constant speed. Here is newly proposed a 4-lobe helical type rotor which can reduce the pressure pulsation drastically and the performance prediction of new PDT is determined.

Allocations and Robust ℋ Fuzzy Control for Waypoints Tracking of Large Displacement Unmanned Underwater Vehicles (대형급 무인잠수정의 임무의 중요성에 따른 목표 경로점 선정 및 제어를 위한 T-S 퍼지모델 기반 강인 ℋ 제어기 설계)

  • Kang, Hyoung Bin;Lee, Ho Jae;Kim, Sung Hoon;Park, Ho Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.402-408
    • /
    • 2017
  • This paper deals with a robust ${\mathfrak{H}}_{\infty}$ controller design problem for waypoints tracking of large displacement unmanned underwater vehicles (LDUUVs) in Takagi-Sugeno fuzzy form. The LDUUV model uses a rudder to control its horizontal motion. We determine the order of waypoints based on their priorities and consider only surge force. A fuzzy controller in state-feedback form is taken and its design condition of is represented in terms of linear matrix inequalities. A numerical simulation is included to show the effectiveness of the theoretical development.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

Evaluation on the Structural Performance of Hybrid Damper Using High-damping Rubber and Steel (고감쇠고무와 강재를 이용한 복합제진댐퍼의 구조성능평가)

  • Kim, Ji-Young;Jung, In-Yong;Kim, Hyung-Geun;Kim, Do-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.99-106
    • /
    • 2016
  • The proposed hybrid damper installs at a coupling beam and consists of a high-damping rubber (HDR) and steel pin. The proposed hybrid damper adopted a pin-lock system acts as a viscoelastic damper under wind load (small displacement) while it behaves as a hysteretic damper under earthquake load (large displacement). In this paper, the pin-lock mechanism and structural performance of the proposed hybrid damper is evaluated through experiment. Experiments were carried out with the variables which displacement, loading frequency and steel pin quantities were used. Test results showed that the pin-lock mechanism and the performance of the hybrid damper under a large displacement were verified. Also equivalent damping ratios of HDR were increasing at a small displacement as displacement amplitudes were increasing. However HDR did not depend on frequency.