• 제목/요약/키워드: Large Dataset

검색결과 561건 처리시간 0.032초

전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론 (Deep Learning-based Professional Image Interpretation Using Expertise Transplant)

  • 김태진;김남규
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.79-104
    • /
    • 2020
  • 최근 텍스트와 이미지 딥러닝 기술의 괄목할만한 발전에 힘입어, 두 분야의 접점에 해당하는 이미지 캡셔닝에 대한 관심이 급증하고 있다. 이미지 캡셔닝은 주어진 이미지에 대한 캡션을 자동으로 생성하는 기술로, 이미지 이해와 텍스트 생성을 동시에 다룬다. 다양한 활용 가능성 덕분에 인공지능의 핵심 연구 분야 중 하나로 자리매김하고 있으며, 성능을 다양한 측면에서 향상시키고자 하는 시도가 꾸준히 이루어지고 있다. 하지만 이처럼 이미지 캡셔닝의 성능을 고도화하기 위한 최근의 많은 노력에도 불구하고, 이미지를 일반인이 아닌 분야별 전문가의 시각에서 해석하기 위한 연구는 찾아보기 어렵다. 동일한 이미지에 대해서도 이미지를 접한 사람의 전문 분야에 따라 관심을 갖고 주목하는 부분이 상이할 뿐 아니라, 전문성의 수준에 따라 이를 해석하고 표현하는 방식도 다르다. 이에 본 연구에서는 전문가의 전문성을 활용하여 이미지에 대해 해당 분야에 특화된 캡션을 생성하기 위한 방안을 제안한다. 구체적으로 제안 방법론은 방대한 양의 일반 데이터에 대해 사전 학습을 수행한 후, 소량의 전문 데이터에 대한 전이 학습을 통해 해당 분야의 전문성을 이식한다. 또한 본 연구에서는 이 과정에서 발생하게 되는 관찰간 간섭 문제를 해결하기 위해 '특성 독립 전이 학습' 방안을 제안한다. 제안 방법론의 실현 가능성을 파악하기 위해 MSCOCO의 이미지-캡션 데이터 셋을 활용하여 사전 학습을 수행하고, 미술 치료사의 자문을 토대로 생성한 '이미지-전문 캡션' 데이터를 활용하여 전문성을 이식하는 실험을 수행하였다. 실험 결과 일반 데이터에 대한 학습을 통해 생성된 캡션은 전문적 해석과 무관한 내용을 다수 포함하는 것과 달리, 제안 방법론에 따라 생성된 캡션은 이식된 전문성 관점에서의 캡션을 생성함을 확인하였다. 본 연구는 전문 이미지 해석이라는 새로운 연구 목표를 제안하였고, 이를 위해 전이 학습의 새로운 활용 방안과 특정 도메인에 특화된 캡션을 생성하는 방법을 제시하였다.

KOSDAQ 시장의 관리종목 지정 탐지 모형 개발 (Development of a Detection Model for the Companies Designated as Administrative Issue in KOSDAQ Market)

  • 신동인;곽기영
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.157-176
    • /
    • 2018
  • 관리종목은 상장폐지 가능성이 높은 기업들을 즉시 퇴출하기 보다는 시장 안에서 일정한 제약을 부여하고, 그러한 기업들에게 상장폐지 사유를 극복할 수 있는 시간적 기회를 주는 제도이다. 뿐만 아니라 이를 투자자 및 시장참여자들에게 공시하여 투자의사결정에 주의를 환기시키는 역할을 한다. 기업의 부실화로 인한 부도 예측에 관한 연구는 많이 있으나, 부실화 가능성이 높은 기업에 대한 사회, 경제적 경보체계라 할 수 있는 관리종목에 관한 연구는 상대적으로 매우 부족하다. 이에 본 연구는 코스닥 기업들 가운데 관리종목 지정 기업과 비관리종목 기업을 표본으로 삼아 로지스틱 회귀분석과 의사결정나무 분석을 이용하여 관리종목 지정 예측 모형을 개발하고 검증하였다. 분석결과에 따르면 로지스틱 회귀분석 모형은 ROE(세전계속사업이익), 자기자본현금흐름률, 총자산회전율을 사용하여 관리종목 지정을 예측하였으며, 전체 평균 예측 정확도는 검증용 데이터셋에 대해 86%의 높은 성능을 보여주었다. 의사결정나무 모형은 현금흐름/총자산과 ROA(당기순이익)를 통한 분류규칙을 적용하여 약 87%의 예측 정확도를 보여주었다. 로지스틱 회귀분석 기반의 관리종목 탐지 모형의 경우 ROE(세전계속사업이익)와 같은 구체적인 관리종목 지정 사유를 반영하면서 기업의 활동성에 초점을 맞추어 관리종목 지정 경향성을 설명하는 반면, 의사결정 관리종목 탐지 모형은 기업의 현금흐름을 중심으로 하여 관리종목 지정을 예측하는 것으로 나타났다.

물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단 (A Diagnosis of Ecological Health Using a Physical Habitat Assessment and Multimetric Fish Model in Daejeon Stream)

  • 김자현;안광국
    • 생태와환경
    • /
    • 제38권3호통권113호
    • /
    • pp.361-371
    • /
    • 2005
  • 본 연구는 금강의 지천인 대전천에서 도심하천에서의 생태학적 건강성 평가를 위해 2004년 8월부터 2005년 4월까지 어류를 이용한 생물학적 건강도지수 (IBI), 대전천의 수질 모니터링 자료 및 물리적 서식지 평가 지수 (QHEI)를 비교하여 총체적 하천생태계 건강도를 진단하였다. 상기 변수의 시공간적인 분석을 위해 대전천의 상류부에서 하류까지 4개의 지점을 선정하였다. 대전천의 생물학적 건강도 지수산정 및 적용을 위해 하천 건강도 평가모델(SHA model)을 개발하였고, 건강도 평가모델은 안 등 (2003)에 의해 국내 환경에 맞게 적용된 IBI (Karr, 1981: Barbour et al., 1999)모델을 이용하였다. 대전천의 이화학적 수질자료 분석에 따르면, 1995년부터 2004년까지 10년 동안 화학적 산소요구량 (COD), 생물학적 산소요구량 (BOD), 총질소 (TN), 총인 (TP)은 1.6 ${\sim}$ 5.3배까지 감소하였고, 상류부터 하류까지 4배 이상의 공간적인 수질 차이를 보였다. 생물학적 건강도지수를 나타내는 SHA모델 값은 평균 23였고, 지점에 따라 20 ${\sim}$ 26까지 변이를 보여 건강도는 ‘보통(Fair)-악화' 상태 (poor)로 나타났다. 서식지 건강도를 나타내는 물리적 서식지 평가지수는 상류부터 하류까지 39(악화상태) ${\sim}$ 124(양호상태)의 범위로 상류역에 위치한 지점 1을 제외하고는 나머지 3개 지점에서 모두 낮은 값을 보였다. US EPA (1993)의 기준에 의거할 때, 생물학적 건강도는 TN, TP, BOD 및 COD 값이 최고치를 보인 지점 4에서 ’악화상태‘로 나타났으며, 화학적 수질 및 서식지 건강도가 타 조사지점들보다 높은 최상류의 지점 1에서 생물학적 건강도는 양호한 것으로 나타났다. 또한 민감종의 상대빈도는 수질과 직접적인 함수관계에 있었으며, 이런 양상은 내성종의 구성비에서도 나타났다. 이 같은 결과는 어류를 이용한 생물학적 건강도는 이화학적 수질 및 물리적서식지 특성을 잘 반영하는 것으로 나타났다.

지각 구조 연구에서 광각 탄성파 자료를 위한 대화식 분석 방법들 (Interactive analysis tools for the wide-angle seismic data for crustal structure study (Technical Report))

  • 등강강;립원순삼;촌뢰규;망월공광;김전의행
    • 지구물리와물리탐사
    • /
    • 제11권1호
    • /
    • pp.26-33
    • /
    • 2008
  • 큰 입사각을 가진 탄성파 반사법과 굴절법 자료의 분석은 지각 규모의 구조 연구에서 중요한 역할을 한다. 그러나, 관측된 자료로부터 적합한 속도 구조 모델을 바로 얻는 것은 상당히 어려운 일이며, 지각 구조 분석은 본질적으로 비선형 문제이기 때문에 구조 모델을 단계적으로 향상 시켜야만 한다. 광각 지각 구조 모델링에는 위상식별과 시행착오 전진 모델링과 같은 몇 가지 주관적인 과정들이 있다. 광각 자료 분석에서 이러한 주관적인 과정들은 결과 모델들의 유일성과 신뢰성을 감소시키기 때문에, 분석절차에서 주관성을 감소시키는 것이 중요하다. 이러한 관점에서, 우리는 지각 구조 모델의 개발에 사용될 PASTEUP과 MODELING이라는 2개의 소프트웨어를 설명하고 있다. PASETUP은 기록 단면도의 도시, 광각 탄성파 자료 분석 그리고 위상 피킹을 쉽게 해주는 대화식 응용프로그램이다. PASETUP은 신호대잡음 비를 향상시키고 위상식별을 도와주는 분석 기능과 다양한 필터를 갖추고 있다. MODELLING은 속도모델의 편집과 파선 모델링을 위한 대화식 응용프로그램이다. MODELING에 의해 계산된 주행시간은 PASTEUP에서 관찰된 파형과 바로 비교될 수 있다. 이것은 지각구조 분석에서 가장 주관적인 과정 중 하나인 주행시간 피킹이 필요 없기 때문에 지각 구조 모델링에서 주관성을 감소시킨다. MODELING은 편집 가능한 층서구조 모델을 다중 채널 탄성파(MCS) 반사파 자료의 시간 단면도와 비교할 수 있는 왕복 주시로 변환할 수 있다. 반사파 자료와 광각 자료의 구조 모델 사이의 직접 비교는 모델에 좀 더 신뢰성을 부여한다. 게다가 PASTEUP과 MODELING 둘다 큰 자료를 다루기에 효과적인 도구이다. 이 소프트웨어들은 광각 탄성파 자료를 이용한 좀 더 그럴듯한 지각-규모의 구조 모델을 개발하는데 도움을 준다.

연관규칙 마이닝에서의 동시성 기준 확장에 대한 연구 (An Investigation on Expanding Co-occurrence Criteria in Association Rule Mining)

  • 김미성;김남규;안재현
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.23-38
    • /
    • 2012
  • 온라인 쇼핑몰은 인터넷을 통해 손쉽게 접근이 가능하기 때문에, 최초 구매의사가 발생한 시점으로부터 이에 대한 실제 구매가 실현되기까지의 기간이 오프라인 쇼핑몰에 비해 비교적 짧게 나타난다. 즉 오프라인 쇼핑몰의 경우 구매희망 물품을 바로 구매하기 보다는 몇 개의 물품들을 모아서 구매하는 행태가 일반적이다. 하지만, 인터넷 쇼핑몰의 경우 단 하나의 물품만을 포함하고 있는 주문이 전체 주문의 절반 이상을 차지한다. 따라서 온라인 쇼핑몰 데이터의 장바구니 분석에 전통적 데이터마이닝 기법을 그대로 적용할 경우, Null Transaction의 수가 지나치게 많음으로 인해 합리적 수준의 지지도(Support)를 만족시키는 규칙을 찾는 것이 매우 어렵게 된다. 이러한 이유로 온라인 데이터를 사용한 많은 연구는 동시성 기준을 여러 방법으로 확장하여 사용하였는데, 이들 동시성 기준은 명확한 근거나 합의 없이 연구자의 상황에 따라 임의로 선택된 측면이 있다. 따라서 본 연구에서는 온라인 마켓 분석에 적용되는 구매의 동시성 기준을 정확도 측면에서 평가함으로써, 구매의 동시성 기준 선정을 위한 근거를 제시하고자 한다. 또한 동시성 기준의 정확도가 고객의 평균 구매간격에 따라 상이하게 나타나는 것을 파악하여, 향후 고객의 특성에 따른 차별화된 추천 시스템 구축을 위한 기본 방향을 제시하고자 한다. 이를 위해 국내 대형 인터넷 쇼핑몰의 최근 2년간 실제 거래 내역을 대상으로 실험을 수행하였으며, 실험 결과 단골 고객의 구매 추천을 위한 분석의 경우 추천 범위와 분석 데이터의 동시성 기준을 맞추어 연관규칙을 도출하는 것이 바람직하며, 비단골 고객의 경우 대부분의 추천 범위에 대해서 분석 데이터의 동시성 기준을 비교적 길게 설정하여 연관규칙을 도출하는 것이 바람직한 것으로 나타났다.

고객 선호 변화를 고려한 토픽 모델링 기반 추천 시스템 (A Topic Modeling-based Recommender System Considering Changes in User Preferences)

  • 강소영;김재경;최일영;강창동
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.43-56
    • /
    • 2020
  • 추천 시스템은 사용자가 다양한 옵션 중에서 최선의 선택을 할 수 있도록 도와준다. 그러나 추천 시스템이 상업적으로 성공하기 위해서는 극복할 몇 개의 문제점이 존재한다. 첫째, 추천시스템의 투명성 부족 문제이다. 즉, 추천된 상품이 왜 추천되었는지 사용자들이 알 수 없다. 둘째, 추천시스템이 사용자 선호의 변화를 즉각적으로 반영할 수 없는 문제이다. 즉, 사용자의 상품에 대한 선호는 시간이 지남에 따라 변함에도 불구하고, 추천시스템이 사용자 선호를 반영하기 위해서는 다시 모델을 재구축해야 한다. 따라서 본연구에서는 이러한 문제를 해결하기 위해 토픽 모델링과 순차 연관 규칙을 이용한 추천 방법론을 제안하였다. 토픽 모델링은 사용자에게 아이템이 왜 추천되었는지 설명하는데 유용하며, 순차 연관 규칙은 변화하는 사용자의 선호를 파악하는데 유용하다. 본 연구에서 제안한 방법은 크게 토픽 모델링 및 사용자 프로파일 생성 등 토픽 모델링에 기반한 사용자 프로파일 생성 단계와 토픽에 사용자 선호 확인 및 순차 연관 규칙 발견 등 순차 연관 규칙에 기반한 추천 단계로 구분된다. 벤치마크 시스템으로 협업 필터링 기반 추천 시스템을 개발하고, 아마존의 리뷰 데이터 셋을 이용하여 제안한 방법론의 성능을 비교 평가하였다. 비교 분석 결과, 제안한 방법론이 협업 필터링 기반 추천시스템보다 뛰어난 성능을 보였다. 따라서 본 연구에서 제안하는 추천 방법을 통해 추천 시스템의 투명성을 확보할 수 있을 뿐만 아니라, 시간에 따라 변화하는 사용자의 선호를 반영할 수 있다. 그러나 본 연구는 토픽과 관련된 상품을 추천하기 때문에, 토픽에 포함된 상품의 수가 많을 경우 추천이 정교하지 못하는 한계점이 있다. 또한 토픽의 수가 적기 때문에 토픽에 대한 순차 연관 규칙이 너무 적은 문제점이 있다. 향후 연구에서 이러한 문제점을 해결한다면 좋은 연구가 될 것으로 판단된다.

CAGEX 관측자료를 이용한 LOWTRAN7의 대기 복사전달 모의에 대한 조사 (Study on the LOWTRAN7 Simulation of the Atmospheric Radiative Transfer Using CAGEX Data.)

  • 장광미;권태영;박경윤
    • 대한원격탐사학회지
    • /
    • 제13권2호
    • /
    • pp.99-120
    • /
    • 1997
  • 위성 탐사 지구 관측 자료, 특히 가시광선 영역의 자료는 태양광이 지구 대기계와 복잡 한 상호 작용을 거친후 위성센서에 의해서 감지되어 수집된 것이다. 따라서 가시광선 영역의 지 구 관측 위성 자료를 정량적으로 분석하기 위해서는 대기의 산란과 흡수에 의한 대기효과에 대한 정량적 보정이 필요하다. 본 연구에서는 대기효과에 대한 정량적 보정을 위해서 복사 전달 모델 의 활용 가능성을 조사하였다. 이를 위해 위성 원격탐사 응용 분야에 이용되고 있는 복사 전달 모델 중의 하나인 LOWTRAN7의 복사 전달 모의 결과 중 단파 자료를 복사 관측 자료인 CAGEX 자료와 비교하였다. CAGEX 관측 자료는 대기복사 모델의 검정을 위하여 NASA Langley Research Center에서 수집한 자료로써, 1)대기 sounding, aerosols, 구름의 특성 자료, 2) 지구복사계, 직달일사계, 차광전천일사계에 의해 측정된 ARM(Aerosol Radiation Measurement) 자료, 3)Fu-Luio 모델에 의해 모의된 장파, 단파 flux 등의 자료로 구성되어 있다. 대기복사 전달 모의를 위하여 에어로졸의 광학적 특성은 CAGEX의 column optical depth, Spinhime의 산란 계 수 수직 분포와 D' Almeida의 에어로졸 복사 특성 값으로부터 도출되었다. LOWTRAN7의 복사 모의는 완전히 맑은 날에 해당하는 31개의 경우에 대하여 수행되었으며, 이 모의 결과 중 단파영 역에서의 지표면에서의 상향복사와 지표면으로의 하향직달복사 및 하향 확산 복사 그리고 대기 상단에서의 상향 복사를 CAGEX 관측 자료와 각각 비교 하였다. 비교 결과 CAGEX 자료에 대한 LOWTRAN7 결과의 표준 오차는 지표면에서의 하향 확산 복사(6.9%)를 제외한 모든 복사 항목 들이 5%이내였다. 이 결과로 보아 하향 확산 복사항의 오차가 가장 크며 이 오차가 관련된 나머 지 항목의 오차를 일으키는 역할을 하는 것으로 추측할 수 있다. 결론적으로 지표면에서의 하향 확산 복사 항목은 에어로졸에 의해 생기는 항목이므로 향후 복사 모델을 고려할 때 에어로졸의 산란에 의한 부분이 더 고려 된다면 복사 전달 모델을 이용하여 정량적으로 대기 효과를 보정하 는데 오차를 줄일 수 있을 것으로 기대된다.

KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석 (Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image)

  • 윤예린;김태헌;오재홍;한유경
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.221-232
    • /
    • 2021
  • 본 연구는 KOMPSAT-3 및 KOMPSAT-3A호에서 전처리 단계에 따라 구분하여 제공하는 Level 1R 영상과 Level 1G 영상을 이용하여 기준영상의 기하품질에 따른 상호좌표등록 결과 분석을 수행하였다. 기준영상으로 Level 1R 영상 및 1G 영상 각각을 사용하고 대상영상은 Level 1R 영상을 사용하여 상호좌표등록을 수행하였다. 실험을 위해 대전지역에서 촬영된 KOMPSAT-3 및 3A호의 Level 1R, 1G 영상 총 7장을 이용하였다. 상호좌표등록을 수행하기 위해, 우선적으로 특징기반 정합기법인 SURF (Speeded-Up Robust Feature) 기법과 영역기반 정합기법인 위상상관 (Phase Correlation) 기법을 함께 이용한 반복적 정합기법을 통해 두 영상의 기하학적 위치를 개략적으로 일치시켜 주었다. 개략적으로 일치된 영상에서 SURF 기법을 이용하여 정합쌍을 추출하고 Affine 변환모델과 Piecewise Linear 변환모델을 각각 구성하여 상호좌표등록을 수행하였다. 실험결과, 기하오차가 보정된 Level 1G 영상을 기준영상으로 선정하였을 경우, Level 1R 영상을 이용하였을 때보다 상대적으로 많은 수의 정합쌍을 추출하였다. 또한, 기준영상이 Level 1G 영상일 때의 상호좌표등록 RMSE (Root Mean Square Error) 값이 평균 5화소 미만으로 Level 1R 영상을 이용하였을 때보다 더 낮은 것을 확인하였다. 이는 상호좌표등록 수행 시 두 위성영상 간의 초기위치관계가 상호좌표등록 결과에 영향을 끼칠 수 있음을 의미하며, 기준영상의 기하품질이 우수할수록 안정적인 상호좌표등록 정확도를 나타내는 것을 확인하였다.

전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지 (Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network)

  • 송아람;최재완;김용일
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.199-208
    • /
    • 2019
  • 운용 가능한 위성의 수가 증가하고 기술이 진보함에 따라 영상정보의 성과물이 다양해지고 많은 양의 자료가 축적되고 있다. 본 연구에서는 기구축된 영상정보를 활용하여 부족한 훈련자료의 문제를 극복하고 딥러닝(deep learning) 기법의 장점을 활용하고자 전이학습과 변화탐지 네트워크를 활용한 고해상도 위성영상의 변화탐지를 수행하였다. 본 연구에서 활용한 딥러닝 네트워크는 공간 및 분광 정보를 추출하는 합성곱 레이어(convolutional layer)와 시계열 정보를 분석하는 합성곱 장단기 메모리 레이어(convolutional long short term memory layer)로 구성되었으며, 고해상도 다중분광 영상에 최적화된 정보를 추출하기 위하여 커널(kernel)의 차원에 따른 정확도를 비교하였다. 또한, 학습된 커널 정보를 활용하기 위하여 변화탐지 네트워크의 초기 합성곱 레이어를 고해상도 항공영상인 ISPRS (International Society for Photogrammetry and Remote Sensing) 데이터셋에서 추출된 40,000개의 패치로 학습된 값으로 초기화하였다. 다시기 KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) 영상에 대한 실험 결과, 전이학습과 딥러닝 네트워크를 활용할 경우 기복 변위 및 그림자 등으로 인한 변화에 덜 민감하게 반응하며 분류 항목이 달라진 지역의 변화를 보다 효과적으로 추출할 수 있었으며, 2차원 커널보다 3차원 커널을 사용할 때 변화탐지의 정확도가 높았다. 3차원 커널은 공간 및 분광정보를 모두 고려하여 특징 맵(feature map)을 추출하기 때문에 고해상도 영상의 분류뿐만 아니라 변화탐지에도 효과적인 것을 확인하였다. 본 연구에서는 고해상도 위성영상의 변화탐지를 위한 전이학습과 딥러닝 기법의 활용 가능성을 제시하였으며, 추후 훈련된 변화탐지 네트워크를 새롭게 취득된 영상에 적용하는 연구를 수행하여 제안기법의 활용범위를 확장할 예정이다.

광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈 (The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring)

  • 양현영;강민석;김준;류다운;김수진;천정화;임종환;박찬우;윤순진
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.198-221
    • /
    • 2021
  • 1960-70년대 대규모 산림녹화 이후에 한국의 산림은 점차 노령화되고 있다. 노령림의 순 CO2 교환은 이론적으로 중립에 가깝지만, 교란이나 관리에 의해 CO2 흡원 또는 발원이 될 수 있다. 본 연구는 한국의 광릉 낙엽활엽수 노령림(GDK)의 CO2 수지 역학을 이해함으로써, 다음 두 가지 질문에 답하고자 하였다: (1) 보전되고 있는 GDK는 과연 이론적으로 알려져 있는 CO2 중립인가? (2) 관측된 CO2 수지의 경년 변동이 문헌에 보고된 조절 인자들과의 선형적인 인과관계로 설명이 가능한가? 이에 답하기 위해, 본 연구는 KoFlux GDK 관측지에서 에디 공분산 기술로 2006년부터 2020년까지 15년 동안 관측된 CO2 플럭스 자료와 생기상학적 자료를 분석하였다. 연구 결과, (1) GDK는 15년 자료를 평균해서 보면 약한 CO2 발원이며, 관측기간 동안 흡원과 발원 사이를 오갔으나 최근 5년 동안 CO2 발원으로서의 강도가 증가하고 있다. (2) 전천일사, 생장기간, 엽면적지수의 경년 변동은 총 일차생산량(Gross Primary Production, GPP)의 경년변동과 양의 상관관계(R2=0.32~0.45)가 있는 반면, 기온과 지표면 온도의 경년 변동은 생태계 호흡(Ecosystem Respiration, RE)의 경년 변동과 유의한 상관관계가 없었다. 또한, 관측기간 초반(첫 10년)의 CO2 플럭스와 기상요인 및 생물학적 요인으로 학습시킨 기계학습은 관측기간 후반(최근 5년)의 GPP와 RE의 경년 변동을 제대로 모사해내지 못했다. 단, 고사목에서 배출된 탄소 추정량이 CO2 발원으로의 전환에 일부 기여했을 것으로 추정된다. GDK의 장기 CO2 수지 역학에 대해 올바로 이해하고 해석하기 위해서는, 분석과 모델링을 위한 복잡계과학 기반의 새로운 프레임워크가 필요하다. 더불어, 플럭스 모니터링 및 자료 품질 유지와 함께 고사목과 교란을 지속적으로 모니터링하는 것이 중요함을 다시 한 번 확인하였다.