• Title/Summary/Keyword: Laplace-Metropolis Algorithm

Search Result 4, Processing Time 0.01 seconds

Laplace-Metropolis Algorithm for Variable Selection in Multinomial Logit Model (Laplace-Metropolis알고리즘에 의한 다항로짓모형의 변수선택에 관한 연구)

  • 김혜중;이애경
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.11-23
    • /
    • 2001
  • This paper is concerned with suggesting a Bayesian method for variable selection in multinomial logit model. It is based upon an optimal rule suggested by use of Bayes rule which minimizes a risk induced by selecting the multinomial logit model. The rule is to find a subset of variables that maximizes the marginal likelihood of the model. We also propose a Laplace-Metropolis algorithm intended to suggest a simple method forestimating the marginal likelihood of the model. Based upon two examples, artificial data and empirical data examples, the Bayesian method is illustrated and its efficiency is examined.

  • PDF

Bayesian Mode1 Selection and Diagnostics for Nonlinear Regression Model (베이지안 비선형회귀모형의 선택과 진단)

  • 나종화;김정숙
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.139-151
    • /
    • 2002
  • This study is concerned with model selection and diagnostics for nonlinear regression model through Bayes factor. In this paper, we use informative prior and simulate observations from the posterior distribution via Markov chain Monte Carlo. We propose the Laplace approximation method and apply the Laplace-Metropolis estimator to solve the computational difficulty of Bayes factor.

On an Optimal Bayesian Variable Selection Method for Generalized Logit Model

  • Kim, Hea-Jung;Lee, Ae Kuoung
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.617-631
    • /
    • 2000
  • This paper is concerned with suggesting a Bayesian method for variable selection in generalized logit model. It is based on Laplace-Metropolis algorithm intended to propose a simple method for estimating the marginal likelihood of the model. The algorithm then leads to a criterion for the selection of variables. The criterion is to find a subset of variables that maximizes the marginal likelihood of the model and it is seen to be a Bayes rule in a sense that it minimizes the risk of the variable selection under 0-1 loss function. Based upon two examples, the suggested method is illustrated and compared with existing frequentist methods.

  • PDF

A Bayesian Poisson model for analyzing adverse drug reaction in self-controlled case series studies (베이지안 포아송 모형을 적용한 자기-대조 환자군 연구에서의 약물상호작용 위험도 분석)

  • Lee, Eunchae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.203-213
    • /
    • 2020
  • The self-controlled case series (SCCS) study measures the relative risk of exposure to exposure period by setting the non-exposure period of the patient as the control period without a separate control group. This method minimizes the bias that occurs when selecting a control group and is often used to measure the risk of adverse events after taking a drug. This study used SCCS to examine the increased risk of side effects when two or more drugs are used in combination. A conditional Poisson model is assumed and analyzed for drug interaction between the narcotic analgesic, tramadol and multi-frequency combination drugs. Bayesian inference is used to solve the overfitting problem of MLE and the normal or Laplace prior distributions are used to measure the sensitivity of the prior distribution.