• Title/Summary/Keyword: Laplace trend test

Search Result 26, Processing Time 0.022 seconds

A characteristic study on the software development cost model based on the lifetime distribution following the shape parameter of Type-2 Gumbel and Erlang distribution (Type-2 Gumbel과 Erlang 분포의 형상모수를 따르는 수명분포에 근거한 소프트웨어 개발 비용모형에 관한 특성 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.460-466
    • /
    • 2018
  • With the development of information technology, the scale of computer software system is constantly expanding. Reliability and cost of software development have a great impact on software quality. In this study, based on the software failure interval time data, a comparative analysis was performed on the characteristics of the software development cost model based on the lifetime distribution following the Type-2 Gumbel and Erlang distribution in the NHPP model. As a result, the trends of the cost curves for the Go-Okumoto model and the proposed Erlang model and the Type-2 Gumble model both decreased in the initial stage and gradually increased in the latter half of the failure time. Also, Comparing the Erlang model with the Type-2 Gumble model, we found that the Erlang model is faster and more cost-effective at launch. Through this study, Software operators should remove possible defects from the testing phase rather than the operational phase to reduce defects after the software release date, it is expected to be able to study the prior information needed to understand the characteristic of software development cost.

The Study for NHPP Software Reliability Model based on Chi-Square Distribution (카이제곱 NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.45-53
    • /
    • 2006
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the $x^2$ reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing shape parameter of the $x^2$ distribution using the degree of freedom, was employed. This analysis of failure data compared with the $x^2$ model and the existing model using arithmetic and Laplace trend tests, Kolmogorov test is presented.

  • PDF

A Study on the Attributes of Software Reliability Cost Model with Shape Parameter Change of Type-2 Gumbel Life Distribution (Type-2 Gumbel 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 비용모형의 속성에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.211-217
    • /
    • 2019
  • In this study, we compare and analyze the attributes of the software development cost model according to the shape parameters change of the Type-2 Gumbel lifetime distribution using the NHPP model. In order to analyze the software failure phenomena, the parametric estimation is applied to the maximum likelihood estimation method, and the nonlinear equations are calculated using the bisection method. As a result, when the attributes of the cost curves according to the change of shape parameters are compared, it is found that the larger the number of shape parameters, the lower the software development cost and the faster the release time. Through this study, it is expected that it will be helpful for the software developers to search for the development cost according to the software shape parameters change, and also to provide the necessary information for the attributes of the software development cost.

A Comparative Study on the Infinite NHPP Software Reliability Model Following Chi-Square Distribution with Lifetime Distribution Dependent on Degrees of Freedom (수명분포가 자유도에 의존한 카이제곱분포를 따르는 무한고장 NHPP 소프트웨어 신뢰성 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Kim, Jae-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.372-379
    • /
    • 2017
  • Software reliability factor during the software development process is elementary. Case of the infinite failure NHPP for identifying software failure, the occurrence rates per fault (hazard function) have the characteristic point that is constant, increases and decreases. In this paper, we propose a reliability model using the chi - square distribution which depends on the degree of freedom that represents the application efficiency of software reliability. Algorithm to estimate the parameters used to the maximum likelihood estimator and bisection method, a model selection based on the mean square error (MSE) and coefficient of determination($R^2$), for the sake of the efficient model, were employed. For the reliability model using the proposed degree of freedom of the chi - square distribution, the failure analysis using the actual failure interval data was applied. Fault data analysis is compared with the intensity function using the degree of freedom of the chi - square distribution. For the insurance about the reliability of a data, the Laplace trend test was employed. In this study, the chi-square distribution model depends on the degree of freedom, is also efficient about reliability because have the coefficient of determination is 90% or more, in the ground of the basic model, can used as a applied model. From this paper, the software development designer must be applied life distribution by the applied basic knowledge of the software to confirm failure modes which may be applied.

The Study for Performance Analysis of Software Reliability Model using Fault Detection Rate based on Logarithmic and Exponential Type (로그 및 지수형 결함 발생률에 따른 소프트웨어 신뢰성 모형에 관한 신뢰도 성능분석 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Software reliability in the software development process is an important issue. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, reliability software cost model considering logarithmic and exponential fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the Goel-Okumoto model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model. For analysis of software reliability model considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of inter-failure time data was made. The logarithmic and exponential fault detection model is also efficient in terms of reliability because it (the coefficient of determination is 80% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, the software developers have to consider life distribution by prior knowledge of the software to identify failure modes which can be able to help.

The Study of Infinite NHPP Software Reliability Model from the Intercept Parameter using Linear Hazard Rate Distribution (선형위험률분포의 절편모수에 근거한 무한고장 NHPP 소프트웨어 신뢰모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.278-284
    • /
    • 2016
  • Software reliability in the software development process is an important issue. In infinite failure NHPP software reliability models, the fault occurrence rates may have constant, monotonic increasing or monotonic decreasing pattern. In this paper, infinite failures NHPP models that the situation was reflected for the fault occurs in the repair time, were presented about comparing property. Commonly, the software model of the infinite failures using the linear hazard rate distribution software reliability based on intercept parameter was used in business economics and actuarial modeling, was presented for comparison problem. The result is that a relatively large intercept parameter was appeared effectively form. The parameters estimation using maximum likelihood estimation was conducted and model selection was performed using the mean square error and the coefficient of determination. The linear hazard rate distribution model is also efficient in terms of reliability because it (the coefficient of determination is 90% or more) in the field of the conventional model can be used as an alternative model could be confirmed. From this paper, the software developers have to consider intercept parameter of life distribution by prior knowledge of the software to identify failure modes which can be able to help.