• Title/Summary/Keyword: Lap splice length

Search Result 70, Processing Time 0.025 seconds

Lap Splice Performance of Reinforcing Bars in High Performance Fiber Reinforced Cementitious Composite under Repeated Loading (반복하중 하에서 고인성 시멘트 복합체 내 철근의 겹침이음성능)

  • Jeon, Esther;Kim, Sun-Woo;Yang, Ii-Seung;Han, Byung-Chan;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.181-184
    • /
    • 2005
  • Experimental results on lap splice performance of high performance fiber reinforced cementitious composite(HPFRCC) with fiber types under repeated loading are reported. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The development length($l_d$) was calculated according to the relevant ACI code requirements for reinforcing bars in concrete. The current experimental results demonstrated clearly that the use of fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars.

  • PDF

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.

Seismic Performance of RC Multi-Column piers with Reinforcement Details (RC 다주교각의 철근상세에 따른 내진성능 평가)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.873-878
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier. But because multi-column piers have small longitudinal stiffness, careful consideration is needed in case of multi-span continuous bridges.

  • PDF

Comparison of code provisions on lap splices

  • Canbay, Erdem
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.63-75
    • /
    • 2007
  • The code provisions on lap splices are critically assessed in the light of 203 beams without transverse reinforcement and 278 beams with transverse reinforcement. For comparison, the provisions given in the ACI 318, Eurocode 2, and TS 500 Codes are considered. The ACI Committee 408 recommended provision and a new proposal are also taken into account throughout the assessment. The comparison with real beam tests where the splice region was subjected to constant moment indicates that current provisions in the Codes do not agree acceptably with test results. The steel stress prediction graphs calculated by means of the Code provisions show high scatter and remain unsafe especially for test data without transverse reinforcement. Both the recent recommended provision by ACI Committee 408 and a new design expression proposed by the author have much less scatter with fewer unsafe predictions. The simplified design provision proposed by ACI Committee 408 does not yield similar results to that of the advanced design provision proposed by the same committee and therefore it could conveniently be replaced with the simpler equation proposed by the author.

Similitude in Flexural Bond Behavior of Small-Scale Reinforced Concrete Beams (축소모델 철근콘크리트 보의 휨부착거동에 있어서의 상사성)

  • 이한선;고동우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.47-57
    • /
    • 1999
  • The small-scale models have been utilized for the prediction of inelastic behavior of reinforced concrete structures for several decades. The parameters that affect the similitude between the model and prototype are various. Among them, the effect of bond between the model reinforcement and the model concrete is one of the most important factors. The study reported herein is addressed to verifying this similitude in bond behavior. The simple beams which have the lap splice at the midspan were made and flexural tests were performed under two-point loading. The length of lap splice are varied from 0.4ld through 0.7ld and up to 1.0ld where ld is the development length of the reinforcement. The selected scales are 1/1, 1/5, 1/10 and 1/12. Two prototype specimens and three models were tested in addition to the associated material tests and the test results are compared from the viewpoint of similitude.

Prying Action of Spliced Reinforcements in Tension (인장 겹침이음에서 프라이 거동의 영향)

  • Chun, Sung-Chul;Choi, Dong-Uk;Ha, Sang-Su;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1085-1088
    • /
    • 2008
  • Splice of reinforcement is inevitable in reinforced concrete structures and, generally, lap splices are used. Lap length for tension splice is determined from development length in tension. The development length is calculated from an experimental model which was based on data of tests on anchorage and splice. Longitudinal reinforcements in flexural members are deformed and, therefore, prying action happens in spliced reinforcements unlike anchored reinforcements. The prying action induces tensile stress in cover concrete and this tensile stress plays the same role to a circumferential tensile stress caused by bond. Because splitting failure is assumed to occur when the summation of tensile stresses caused by the prying action and the bond is equal to the tensile strength of the concrete, the prying action reduces the bond strength of spliced reinforcements. A theoretical model for the prying action is developed and effects of the prying action on the bond strength are assessed. The tensile stress by the prying action is proportional to tensile strength and modulus of elasticity of reinforcements. In addition, the tensile stress is inversely proportional to spacing of reinforcements. Consequently, longer splice length is required for spliced reinforcements with small spacing in flexible members.

  • PDF

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

Lap Details Using Headed Bars and Hooked Bars for Flexural Members with Different Depths (확대머리 철근과 갈고리 철근을 이용한 단차가 있는 휨부재의 겹침이음상세)

  • Lee, Kyu-Seon;Jin, Se-Hoon;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.144-152
    • /
    • 2016
  • This paper focuses on the experimental study for investigating the performance for lap splice of hooked or headed reinforcement in beam with different depths. In the experiment, seven specimens, with its variables as the lap length of headed or hooked bar, the existence of stirrups, etc., was manufactured. Bending test was conducted. Lap strengths by test were compared with the theoretical model based on KCI2012. The result showed that the cracks at failure mode occurred along the axial direction to a headed bar. The initial stiffness and the stiffness after initial crack were similar for all specimens. For HS series specimens without stirrups, a 25% increase in lap length was increased 11.8~18.1% maximum strengths. For HH series specimens without stirrups, a increase in lap length did not affect the maximum strengths because of the pryout failure of headed bar. For HS series specimens, the theoretical lap strengths based on KCI2012 considering the B grade lap and the reduction factor for stirrup were evaluated. They are smaller than the test strengths and can ensure the safety in terms of strength capacity. For HH series specimens, the stirrups in the lap zone are needed to prevent the pryout behaviour of headed bar.

An Experimental Study on Effects Transverse Reinforcement in Lap-Spliced Tension Reinforcing Bars (인장철근의 겹침이음에서 횡보강근의 효과에 관한 실험적 연구)

  • 이호준;최선아;연규원;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.879-884
    • /
    • 2000
  • In this study, an experimental work is conducted to evaluate the bond performance between reinforcing bars and surrounding concrete in a lapped splice. The major variable of this test is a transverse reinforcement in lap-spliced tension reinforcing bars. The test results indicate that the bond strength per unit splice length increases with an increase in the transverse reinforcement factor $K_{\alpha}$. The specimens taken less than (c+$K_{tr}$)/$d_b$=3.0 tend to be very brittle at failure. But the specimens taken longer than (c+$K_{tr}$)/$d_b$=3.0 tend to be somewhat ductile at failure.

Analytical Study on Splice Performances with the Vertical Noncontact Lapped of Reinforcing Bars (수직으로 비접촉 겹침이음된 철근의 이음성능에 관한 해석적 연구)

  • Lee Ho-Jin;Kim Seung-Hun;Ha Sang-Su;Moon Jeong-Ho;Lee Li-Hyung;Lee Yong-Taeg
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.171-174
    • /
    • 2005
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-beam. To evaluate the performance for noncontact lapped splice, analytical works were conducted. Major variables for FEM analysis are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. The results of this study show thar the these variables has much influence on strength and deformation of lapped joint.

  • PDF