• Title/Summary/Keyword: Lap joints

Search Result 199, Processing Time 0.025 seconds

DC Performance of $Nb_3$Sn Cable Joints with multi-interfaces (다수의 접합경계를 갖는 $Nb_3$Sn 케이블 접합부의 직류 저항 특성)

  • 이호진;김기백;연제욱;홍계원;김기만
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.170-176
    • /
    • 2000
  • The joints with multi-interfaces was expected to have low DC resistance compared with those with single interface. The small size joint specimens joined with Nb3Sn sub-cables were fabricated to investi-gate the DC performance in the range of 0 to 600A transport current without external magnetic field. The joints with multi-interfaces have a few n-Ohm resistance, which is much lower than that of single lap joint. Because the interfaces between sub-cables of multi-interfaced joint are more complicated than those of single-interfaced joint, the soldering condition between sub-cables is very effective on the joint DC resistance.

  • PDF

A Parametric Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재-알루미늄 단일겹침 접착 체결부의 강도에 관한 인자연구)

  • Kim, Tae-Hwan;Seong, Myeong-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2007
  • Strength and failure of adhesively bonded carbon composite-to-aluminum single-lap joints were studied by experiment. The main objective of this study is to investigate the effect of various parameters such as curing pressure for bonding, overlap lengths, and adherend thickness on the failure loads and modes of the bonded Joints with dissimilar materials. Experimental results show that the bonding pressure for composite-to-aluminum dissimilar materials should be 4 atm at the lowest. Failure load of the joints increases as the overlap length increases, but the strength (failure load divided by bonded area) decreases rapidly after the overlap width-to-length ratio is greater than 1. When the adherend thickness increase to double, bonding strength increase $12{\sim}55%$. Major failure mode of the joints is the delamination in the composite laminate and the location of delamination goes deeper into the laminates as the bonding pressure and overlap length increase.

Procedural steps for reliability evaluation of ultrasonically welded REBCO coated conductor lap-joints under low cycle fatigue test condition

  • Michael De Leon;Mark Angelo Diaz;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.28-31
    • /
    • 2023
  • This study presents a comprehensive procedure for the low cycle fatigue test of ultrasonically welded (UW) coated conductor (CC) lap-joints. The entire process is examined in detail, from the robust fabrication of the UW REBCO CC joints to the reliability testing under a low number of repeated cycle fatigue conditions. A continuous Ic measurement system enables real-time monitoring of Ic variations throughout the fatigue tests. The study aims to provide a step-by-step procedure that involves joint fabrication, electromechanical property (EMP) tests under uniaxial tension for stress level determination, and subsequent low-cycle fatigue tests. The joints are fabricated using a hybrid method that combines UW with adding In-Sn soldering, achieving a flux-free hybrid welding approach (UW-HW flux-free). The selected conditions for the low cycle fatigue tests include a stress ratio of R=0.1 and a frequency of 0.02 Hz. The results reveal some insights into the fatigue behavior, irreversible changes, and cumulative damage in the CC joints.

A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method (I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구)

  • Choi, Seong-Hyun;Song, Sang-Hoon;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.317-322
    • /
    • 2021
  • When a complex load such as torsion, low-speed impact, or fatigue load is applied, the properties in the thickness direction are weakened through microcracks inside the material due to the nature of the laminated composite material, and delamination occurs. To prevent the interlaminar delamination, various three-dimensional reinforcement methods such as Z-pinning and stitching, and structural health monitoring techniques that detect the microcrack of structures in real time have been continuously studied. In this paper, the single-lap joints with I-fiber stitching process were manufactured by a co-curing method and their strengths and failure detection capability were evaluated. AE and electric resistance method were used for detection of crack and failure signal and electric circuit for signal analysis was manufactured, and failure signal was analyzed during the tensile test of a single-lap joint. From the experiment, the strength of the single lap joint reinforced by I-fiber stitching process was improved by about 44.6% compared to the co-cured single lap joint without reinforcement. In addition, as the single-lap joint reinforced by I-fiber stitching process can detect failure in both the electrical resistance method and the AE method, it has been proven to be an effective structure for failure monitoring as well as strength improvement.

Failure Mode and Strength of Unidirectional Composite Single Lap Bonded Joints I. Experiments (일방향 복합재료 Single Lap접합 조인트의 파손 모드 및 강도 I. 실험)

  • Kim Kwang-Soo;Yoo Jae-Seok;An Jae-Mo;Jang Young-Soon
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.14-21
    • /
    • 2004
  • Failure process, mode and strength of unidirectional composite single lap bonded joints were investigated experimentally with respect to bonding methods, those are, co-curing with and without adhesive and secondary bonding. The co-cured joint specimens without adhesive had the largest failure strength. Progressive failures along the adhesive layer occurred in the secondary bonded specimens. In the co-cured specimens with adhesive film which had better material strength and adhesion performance, delamination failure occurred and the joint strengths were less than those of secondary bonded specimens. Delamination failure did not occur in the secondary bonded specimens because of earlier crack growth and progressive failure in the adhesive layer. Therefore, failure strength of composite bonded Joints were not always proportionate to material strength and adhesion performance of the adhesive due to the weakness of delamination in composite materials. The effects of surface roughness, bondline thickness and fillets were also studied on secondary bonded specimens.

Failure Model for the Adhesively Bonded Tubular Single Lap Joints Under Static Tensile Loads (축방향하중에 대한 튜브형 단면겹치기 접착조인트의 전적 파괴모델에 관한 연구)

  • Kim, Yeong-Gu;Lee, Su-Jeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1543-1551
    • /
    • 1996
  • The static tensile load bearing capability of as adhesively-bonded tubular single lap jint that is calculated usign the linear mechanical properties of adhesive is usually far from the experimentally determined because the majority of the load transfer of the adhesively-bonded jointd is accomplished by the nonlinear behavior of the rubber-toughened eoxy adhesive. In this paper, both the nonlinear mechanical properties and the fabrication residual thermal stresses of adhesive were included in the calculation of the stresses of adhesively-bonded joints. The onlinear tensile properties of adhesive were approximated by an exponential form which was represented by the initial tensile modulus and ultimate tensile stength of adhesive. The stress distribution in the adhesive were calculated by applying the load obtained from the tensile tests. From the tensile tests and the stress analysis of adhesively-bonded hoints, the failure model for adhesively-bonded tubular single lap joints was proposed.

Fatigue Design of Spot Welded Lap Joint Considered Residual Stress (잔류응력을 고려한 점용접이음재의 피로설계)

  • Son, Il-Seon;Bae, Dong-Ho;Hong, Jeong-Gyun;Lee, Beom-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.743-751
    • /
    • 2000
  • Because welding residual stress is formidable result in electric resistance spot welding process, and it detrimentally affect to fatigue crack initiation and growth at nugget edge of spot welded la p joints, it should be considered in fatigue analysis. Thus, accurate prediction of residual stress is very important. In this study, nonlinear finite element analysis on welding residual stress generated in process of the spot welding was conducted, and their results were compared with experimental data measured by X-ray diffraction method. By using their results, the maximum principal stress considered welding residual stress at nugget edge of the spot welded lap joint subjected to tension-shear load was calculated by superposition method. And, the $\Delta$P- $N_f$ relations obtained through fatigue, tests on the IB-type spot welded lap joints was systematically rearranged with the maximum principal stress considered welding residual stress. From the results, it was found th2at fatigue strength of the IB-type spot welded lap joints could be systematically and more reasonably rearranged by the maximum principal stress($\sigma$1max-res considered welding residual stress at nugget edge of the spot welding point.

Stress Analysis Crack of Double-lap Joint with an End Mismatch (End mismatch를 갖는 접착이음의 강도 평가)

  • Hyun, Cheol-Seung;Heo, Sung-Pil;Yang, Won-Ho;Ryu, Myung-Hae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.465-470
    • /
    • 2001
  • The adhesively-bonded joints considered in this investigation include single-lap joint and double-lap joint. For an adhesively bonded double-lap joint, end mismatch between the two cuter adherends(upper, lower) can not removed completely although it can be controlled within a manufacturing tolerance. This paper shows that the end mismatch introduces local bending and end mismatch affects the shear and peel stresses in the adhesive. The double-lap joint with an end mismatch is affected of adhesive thickness, material properties of adhesive and adherend etc. Also, we concluded that there are critical value of an end mismatch to provoke the interface fracture.

  • PDF

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

Analysis for Strength Estimation of Adhesive Joints (접착이음의 강도평가에 대한 해석)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF