• Title/Summary/Keyword: Lanthanide ion

Search Result 41, Processing Time 0.024 seconds

Synthesis of Ti-SBA-15 Doped with Lanthanide Ion and Photocatalytic Decomposition of Methylene Blue (La 이온이 도핑된 Ti-SBA-15의 합성 및 메틸렌블루의 광촉매 분해 반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.323-327
    • /
    • 2010
  • Ti-SBA-15 catalysts doped with lanthanide ion were synthesized using conventional hydrothermal method and they were characterized by XRD, FT-IR, DRS, $NH_3$-TPD and PL. We also examined the activity of these materials on the photocatalytic decomposition of methylene blue. La/Ti-SBA-15 samples with varying lanthanide ions doping maintained the mesoporous structure and the catalysts calcined at $500^{\circ}C$ for 6 h showed the highest crystallinity. With increasing the doping amount of lanthanide ion, the pore size and pore volume of La/Ti-SBA-15 materials decreased but the surface area increased. 1% La/Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with more than 5% lanthanide ions showed lower activity compared to pure Ti-SBA-15 catalyst.

Microwave-assisted Preparation, Structures, and Photoluminescent Properties of [Ln(NO3)2(H2O)3(L)2](NO3)(H2O) {Ln=Tb, Eu;L=2-(4-pyridylium)ethanesulfonate, (4-pyH)+-CH2CH2-SO3-}

  • Zheng, Zhen Nu;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1859-1864
    • /
    • 2011
  • Two lanthanide complexes, $[Ln(NO_3)_2(H_2O)_3(L)_2](NO_3)(H_2O)$ {Ln = Eu (1), Tb (2); L = 2-(4-pyridylium)-ethanesulfonate, $(4-pyH)^+-CH_2CH_2-SO_3^-)$}, were prepared from lanthanide nitrate and 4-pyridineethanesulfonic acid in $H_2O$ under microwave-heating conditions. Complexes 1 and 2 are isostructural, and the lanthanide metal in both complexes is coordinated to nine oxygen atoms. The pyridyl nitrogen in the ligand is protonated to give a zwitter ion that possesses an $NH^+$ (pyridyl) positive end and an $SO_3^-$ negative end. All O-H and N-H hydrogen atoms participate in hydrogen bonds to generate a two-dimensional (complex 1) or a three-dimensional network (complex 2). Complex 1 exhibits an intense red emission, whereas complex 2 exhibits an intense green emission in the solid state at room temperature.

Crystal Structures and Thermal Properties of 2,6-Dinitrophenol Complexes with Lanthanide Series

  • Kim, Eun-Ju;Kim, Chong-Hyeak;Kim, Jae-Kyung;Yun, Sock-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1157-1161
    • /
    • 2008
  • 2,6-Dinitrophenol (2,6-DNP) complexes with lanthanide series including yttrium (except Pm, Tm, and Lu) have been synthesized and their crystal structures have been analyzed by X-ray diffraction methods. Singlecrystal X-ray structure determinations have been performed at 296 K on the Ce$\rightarrow$Yb species and shown them to be isomorphous, triclinic, P1, a = 8.6558(2)$\rightarrow$8.5605(3) $\AA$, b = 11.8813(3)$\rightarrow$11.6611(4) $\AA$, c = 13.9650(3) $\rightarrow$13.8341(5) $\AA$, $\alpha$ = 73.785(1)$\rightarrow$73.531(2)o, $\beta$ = 74.730(1)→74.903(2)${^{\circ}}$, $\gamma$ = 69.124(1)→ 69.670 $(2){^{\circ}}$, V = 1266.86(5)→1221.53(7) $$\AA^{3}$$, Z = 2. In Ln(III) complexes, three 2,6-DNP ligands coordinate directly to the metal ion in the bidentate fashion. The nine coordinated Ln(III) ion forms slightly distorted tri-capped trigonal prism. There are no water molecules in the crystal lattice. The dependences of metal to ligand bond lengths are discussed on the atomic number of lanthanide elements. The thermal properties of lanthanide complexes of 2,6- DNP have also studied by TG-DTG and DSC thermal analysis methods.

Sensitized Near IR Luminescence of Er(Ⅲ) Ion in Lanthanide Complexes Based on Diketone Derivatives: Synthesis and Photophysical Behaviors

  • Baek, Nam-Seob;Kwak, Bong-Kyu;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1256-1260
    • /
    • 2007
  • Two β-diketone derivatives bearing triphenylene (1-naphthalene-2-yl-3-triphenylen-2-yl-propane-1,3-dione (NTPD)) and naphthalene (1,3-di-naphthalene-2-yl-propane-1,3-dione (DNPD)) and their Ln(III) complexes (Ln = Er or Gd) were synthesized and their photophysical properties were investigated. The sensitized emission of Er3+ ion in Er3+-[NTPD]3(terpy) and Er3+-[DNPD]3(terpy) was observed upon excitation at absorption maximum of ligands. Their photophysical studies indicate the sensitization of Er3+ luminescence by energy transfer through the excited triplet state of β-diketone ligand. The energy transfer rate through the excited triplet state of β-diketone ligand to Er3+ ion occurs faster than that of the oxygen quenching rate.

Synthesis and Electrochemical Characteristics of Lantanium and Neodynium Metal Complexes (란탄늄 및 네오디늄 금속의 착물합성과 전기화학적 특성)

  • Oh, Je Jik
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1993
  • The electrochemical behaviors of lanthanide ion(La and Nd) and lanthanide complexes with 2, 2, 6, 6-tetramethyl-3, 5-heptanedione(THD), sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A) ligands in acton solution have been investigated by the use of cyclic voltammetry and direct current polarography. The peak potential and peak current, their dependency on the concentration, temperature, the reversibility of the eleotrode reactions are described. The reduction of the lanthanide ions and complexes in 0.05 M TEAP proceeded one-electron step in first step and one two-electron step in second step. These reduction step was irreversible and the reduction current was diffusion controlled. Macrovcyclic crown ethers, sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A), were prepared from 1, 5-bis-(2-hydroxyphenoxy)-3-oxapentane with epichlorohydrin. The voltammetric behaviors of Ln(III)-HD16C5 and Ln-D16C5A complexes in aceton solution have been investigated by the voltammetric method. The composition and stability constants of lanthanide complexes were determined.

  • PDF

Electrochemical Studies on the Lanthanides (란탄족 원소의 전기화학적 환원에 관한 연구 (제 1 보))

  • Park, Jong Min;Gang, Sam U;Do, Lee Mi;Han, Yang Su;Son, Byeong Chan
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.561-568
    • /
    • 1990
  • Voltammetric behavior of some light lanthanide ions (La$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, and Eu$^{3+}$) in various supporting electrolytes has been investigated by several electrochemical techniques. The peak potentials and the peak currents, their dependency on the concentration, temperature and pH effects, the reversibility of the electrode reactions are described. The reduction of La$^{3+}$, Pr$^{3+}$ and Nd$^{3+}$ in 0.1 M lithium chloride proceeds by a three-electron change directly to the metallic state (Ln$^{3+}$ + 3e- → Ln$^0$) and charge transfer is totally irreversible. However, the reduction of Sm$^{3+}$ in 0.1 M tetramethylammonium iodide and Eu$^{3+}$ in 0.1 M lithium chloride proceeds in two stages (Ln$^{3+}$ + e- → Ln$^{2+}$ and Ln$^{2+}$ + 2e- → Ln$^0$). At pH values lower than ca.4 the hydrated lanthanide species (Ln(OH)$^{2+}$) reduced before the lanthanide ions (Ln$^{3+}$) due to the catalytic effect of hydrogen ions, and peak current increase with in the order Eu$^{3+}$ < Sm$^{3+}$ < Nd$^{3+}$ < Pr$^{3+}$ < La$^{3+}$ in differential pulse polarography. Some representative plots of $i_{pc}V^{-1/2} (proportional to current function) vs. V show considerable influence of hydrogen ion/lanthanide ion concentration in cyclic voltammetry. It is shown that a reaction of lanthanide ions with proton and/or water and catalytic reaction is enhanced at lower pH and at decreased lanthanide ion concentration.

  • PDF

Solvent Extraction of Eu3+ and Tb3+ Ions with 12-Crown-4 15-Crown-5 and 18-Crown-6 (12-Crown-4, 15-Crown-5 및 18-Crown-6에 의한 Eu(Ⅲ) 및 Tb(Ⅲ)의 용매추출)

  • Kim, Eun-Jeong;Yoon, Soo-Kyung;Bae, Jun-Hyun;Kang, Jun-Gil;Kim, Youn-Doo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.266-274
    • /
    • 1995
  • The extractions of aqueous Eu3+ and Tb3+ ions into ethylacetate or dichloromethane were conducted by using 12-crown-4, 15-crown-5 and 18-crown-6 ethers as ligand. Benzoate ion was selected as counter anion for the complexes formed between the lanthanide ions and crown ethers. Fluorescence spectra of the lanthanide ions induced by the energy transfer from benzoate anion to the cations were also measured. The quantitative analysis of the lanthanide ions extracted into organic phase were made on the basis of the results of fluorescence. The measured extractivity is interpreted in terms of the ion-dipole interaction.

  • PDF

Lanthanide Complexes of Some High Energetic Compounds (II), Crystal Structures and Thermal Properties of Picrate Complexes

  • Yun, Sock-Sung;Kang, Sung-Kwon;Suh, Hong-Ryol;Suh, Hyung-Sock;Lee, Eun-Kwang;Kim, Jae-Kyung;Kim, Chong-Hyeak
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1197-1202
    • /
    • 2005
  • The Ln(III) complexes with picrate ligand, $[Sm(Pic)_2(H_2O)_6]Pic{\cdot}6H_2O$, 1, and $[Ho(Pic)(H_2O)_7](Pic)_2{\cdot}3H_2O$, 2, have been synthesized and their crystal structures are analyzed by X-ray diffraction methods. Complex 1, crystallizes in the monoclinic $P2_1/n$ space group and complex 2 in the triclinic P-1 space group. In complex 1, two picrate ligands coordinate to the Sm(III) ion, one of them in the bidentate fashion. There are one picrate anion and six water molecules in the crystal lattice. The nine-coordinated Sm(III) ion forms a slightly distorted tricapped trigonal prism. In complex 2, only one picrate ligand coordinates to the metal ion as a monodentate. There are two picrate anions and three water molecules in the crystal lattice. The eight-coordinated Ho(III) ion forms a distorted bicapped trigonal prism. Based on the results of the TG-DTG and DSC thermal analysis, it was analyzed that the lanthanide picrate complexes 1 and 2 are thermally decomposed in three distinctive stages, the dehydration, the picrate decomposition, and the formation of the metal oxide.