• 제목/요약/키워드: Language network analysis

검색결과 372건 처리시간 0.026초

Analysis of University Unification Education Research Trends Using Text Network Analysis and Topic Modeling

  • Do-Young LEE
    • 웰빙융합연구
    • /
    • 제6권4호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: This study analyzed papers identified by entering the two keywords 'unification education' and 'university' during research from 2013 to 2022 in order to identify trends and key concepts in unification education research at domestic universities. Research design, data, and methodology: The study analyzed 224 papers, excluding those on primary, middle, and high school unification education, as well as unrelated and duplicate papers. The analysis included developing a co-occurrence network of keywords, utilizing topic modeling to categorize research types, and confirming visualizations such as word clouds and sociograms. Results: In the final analysis, the research identified 1,500 keywords, with notable ones like 'Korea,' 'education,' 'unification.' Centrality analysis, measuring influence through connected keywords, revealed that 'Korea,' 'education,' 'north,' and 'unification' held significant positions. Keywords with high centrality compared to their frequency included 'learning,' 'development,' 'training,' 'peace,' and 'language,' in that order. Conclusions: This study investigated trends and structures in university-level unification education by analyzing papers identified with the keywords 'unification education' and 'university.' The use of keyword network analysis aimed to elucidate patterns and structures in university-level unification education. The significance of the study lies in offering foundational data for future research directions in the field of unification education at universities.

Study on Agenda-Setting Structure between SNS and News: Focusing on Application of Network Agenda-Setting

  • Kweon, Sang-Hee;Go, Taeseong;Kang, Bo-young;Cha, Min-Kyung;Kim, Se-Jin;Kweon, Hea-Ji
    • International Journal of Contents
    • /
    • 제15권1호
    • /
    • pp.10-24
    • /
    • 2019
  • This study applied network agenda-setting theory to analyze the impact of the agenda-setting function of the media on certain issues by focusing on the agenda at the center of controversy, 'Creative Economy'. To this end, the study extracted the data referred to creative economy in the media and SNS from 1 January 2008 to 31 December 2014, and analyzed the data using the network analysis program UCINET and the Korean language analysis program Textom. The results of the present study show that, during the period under former President Lee (2008-2011), the media's creative economy agenda-setting function did not exert a significant impact on the agenda-setting within SNS. However, from 2012 when the government of former President Park Geun-hye had started, the agenda-setting function of the media starts to show increasingly strong influence on the agenda cognition in SNS. The central words and sub-words configuration forming the center of the semantic network moved in the direction of a high correlation, in addition to the gradually increasing correlation based on QAP correlation analysis. In 2014, the semantic networks of the media and SNS bore a close resemblance to each other, while the shape of networks and sub-words structure also had a high level of similarity.

The Role of GPT Models in Sentiment Analysis Tasks

  • Mashael M. Alsulami
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.12-20
    • /
    • 2024
  • Sentiment analysis has become a pivotal component in understanding public opinion, market trends, and user experiences across various domains. The advent of GPT (Generative Pre-trained Transformer) models has revolutionized the landscape of natural language processing, introducing a new dimension to sentiment analysis. This comprehensive roadmap delves into the transformative impact of GPT models on sentiment analysis tasks, contrasting them with conventional methodologies. With an increasing need for nuanced and context-aware sentiment analysis, this study explores how GPT models, known for their ability to understand and generate human-like text, outperform traditional methods in capturing subtleties of sentiment expression. We scrutinize various case studies and benchmarks, highlighting GPT models' prowess in handling context, sarcasm, and idiomatic expressions. This roadmap not only underscores the superior performance of GPT models but also discusses challenges and future directions in this dynamic field, offering valuable insights for researchers, practitioners, and AI enthusiasts. The in-depth analysis provided in this paper serves as a testament to the transformational potential of GPT models in the realm of sentiment analysis.

Analysis of Keywords and Language Networks of Pedagogical Problems in the Secondary-School Teacher's Employment Exam : Focusing on the 2019~2022 School Year Exam

  • Kwon, Choong-Hoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권7호
    • /
    • pp.115-124
    • /
    • 2022
  • 본 연구의 목적은 2019~2022학년도 중등교사 임용시험 교육학문제의 연도별 핵심어와 그 경향, 핵심어들의 언어네트워크를 분석하여 그 결과를 제시하는 것이다. 주요 연구방법론은 텍스트 마이닝 기법과 언어네트워크 분석방법이었으며, 분석프로그램으로는 KrKwic, Wordcloud Maker, Ucinet6, NetDraw 등이었다. 연구결과는 다음과 같다. 첫째, 연도별 교육학문제의 상위출현빈도 핵심어는 교사, 학생, 교육과정, 수업, 평가 등의 기존 상위출현빈도 핵심어들이었으며, 최근 코로나 19 상황의 온라인수업 진행을 반영한 핵심어(온라인, 위키, 토의식, 정보 등)들도 추가로 등장하는 경향을 보였다. 4개년도 통합 텍스트에서의 상위출현빈도 핵심어는 학생(44), 교사(39), 수업(27), 학교(18), 교육과정(16), 온라인(10), 토의식(8) 등이었다. 둘째, 4개년도 상위출현빈도 핵심어들의 전체 언어네트워크는 상당한 수준의 밀도(0.566), 총연결수(492), 평균연결정도(16.4)로 분석되었다. 연결정도 중심성은 교사(199.0), 수업(197.0), 학생(185.0), 학교(150.0) 순으로 나타났으며, 매개 중심성은 교사(30.859), 수업(18.956), 학생(16.054), 학교(15.745) 순으로 나타났다. 본 연구결과는 중등교사 임용시험 수험생인 예비교사, 해당 시험 출제 관리하는 기관과 관련자, 중등학교 예비교사 양성기관의 교수자와 행정가들에게 고려해볼 만한 자료가 되길 기대한다.

한글 감정단어의 의미적 관계와 범주 분석에 관한 연구 (A Study on the Analysis of Semantic Relation and Category of the Korean Emotion Words)

  • 이수상
    • 한국도서관정보학회지
    • /
    • 제47권2호
    • /
    • pp.51-70
    • /
    • 2016
  • 이 연구의 목적은 한글로 된 주요감정단어들의 리스트를 대상으로 의미적 관계의 네트워크와 극성과 각성의 범주를 분석하는데 있다. 분석결과는 다음과 같다. 첫째, 감정단어 네트워크에서 각 감정단어들은 의미적으로 연결되어 있었다. 이것은 의미적 유사성에 따라 감정단어들의 유형을 구분하는 것을 어렵게 하는 특징이다. 대신에 의미적 관계의 감정단어 네트워크에서 중심적인 역할을 수행하는 감정단어들을 확인할 수 있었다. 둘째, 극성과 각성의 차원을 혼합한 범주에서, 많은 감정단어들은 부정적인 극성과 높은 각성의 단어들 집단과 부정적인 극성과 중간수준 각성의 단어들 집단으로 분류되었다. 이러한 한글감정단어의 특성들은 도서관이나 문헌정보에 나타나는 각종 텍스트 데이터의 감정분석에 유용하게 활용될 것이다.

뉴스 기사 텍스트 마이닝과 네트워크 분석을 통한 폭염의 사회·경제적 영향 유형 도출: 2012~2016년 사례 (Text Mining and Network Analysis of News Articles for Deriving Socio-Economic Damage Types of Heat Wave Events in Korea: 2012~2016 Cases)

  • 정재인;이경준;김승범
    • 대기
    • /
    • 제30권3호
    • /
    • pp.237-248
    • /
    • 2020
  • In order to effectively prepare for damage caused by weather events, it is important to proactively identify the possible impacts of weather phenomena on the domestic society and economy. Text mining and Network analysis are used in this paper to build a database of damage types and levels caused by heat wave. We collect news articles about heat wave from the SBS news website and determine the primary and secondary effects of that through network analysis. In addition to that, based on the frequency with which each impact keyword is mentioned, we estimate how much influence each factor has. As a result, the types of impacts caused by heat wave are efficiently derived. Among these types of impacts, we find that people in South Korea are mainly interested in algae and heat-related illness. Since this technique of analysis can be applied not only to news articles but also to social media contents, such as Twitter and Facebook, it is expected to be used as a useful tool for building weather impact databases.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

동사 어휘의미망의 반자동 구축을 위한 사전정의문의 중심어 추출 (The Extraction of Head words in Definition for Construction of a Semi-automatic Lexical-semantic Network of Verbs)

  • 김혜경;윤애선
    • 한국언어정보학회지:언어와정보
    • /
    • 제10권1호
    • /
    • pp.47-69
    • /
    • 2006
  • Recently, there has been a surge of interests concerning the construction and utilization of a Korean thesaurus. In this paper, a semi-automatic method for generating a lexical-semantic network of Korean '-ha' verbs is presented through an analysis of the lexical definitions of these verbs. Initially, through the use of several tools that can filter out and coordinate lexical data, pairs constituting a word and a definition were prepared for treatment in a subsequent step. While inspecting the various definitions of each verb, we extracted and coordinated the head words from the sentences that constitute the definition of each word. These words are thought to be the main conceptual words that represent the sense of the current verb. Using these head words and related information, this paper shows that the creation of a thesaurus could be achieved without any difficulty in a semi-automatic fashion.

  • PDF

NLP기반 NER을 이용해 소셜 네트워크의 조직 구조 탐색을 위한 협력 프레임 워크 (A Collaborative Framework for Discovering the Organizational Structure of Social Networks Using NER Based on NLP)

  • 프랭크 엘리호데;양현호;이재완
    • 인터넷정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.99-108
    • /
    • 2012
  • 방대한 양의 데이터로부터 정보추출의 정확도를 향상시키기 위한 많은 방법이 개발되어 왔다. 본 논문에서는NER(named entity recognition), 문장 추출, 스피치 태깅과 같은 여러 가지의 자연어 처리 작업을 통합하여 텍스트를 분석하였다. 데이터는 도메인에 특화된 데이터 추출 에이전트를 사용하여 웹에서 수집한 텍스트로 구성하였고, 위에서 언급한 자연어 처리 작업을 사용하여 비 구조화된 데이터로부터 정보를 추출하는 프레임 워크를 개발하였다. 조직 구조의 탐색을 위한 택스트 추출 및 분석 관점에서 연구의 성능을 시뮬레이션을 통해 분석하였으며, 시뮬레이션 결과, 정보추출에서 MUC 및 CoNLL과 같은 다른 NER 분석기 보다 성능이 우수함을 보였다.

빅데이터를 위한 트랜스포머 기반의 언어 인식 기법 (Transformer-based Language Recognition Technique for Big Data)

  • 황치곤;윤창표;이수욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.267-268
    • /
    • 2022
  • 최근, 빅데이터 분석은 기계학습의 발전에 따른 다양한 기법들을 이용할 수 있다. 현실에서 수집된 빅데이터는 단어 간의 관계성에 대한 의미적 분석을 바탕으로 같거나 유사한 용어에 대한 자동화된 정제기법이 부족하다. 빅데이터는 보통 문장의 형태로 구성되어 있고, 이에 대한 형태소 분석이나 문장의 이해가 필요하다. 이에 자연어를 분석하기 위한 기법인 NLP는 단어의 관계성과 문장을 이해할 수 있다. 본 논문에서는 빅데이터를 시계열 접근법인 RNN의 단점을 보완한 기법인 트랜스포머와 리포머의 장단점에 대해 연구한다.

  • PDF