The purpose of this study was to investigate the actual conditions, satisfaction towards, and effects of children's cooking activity programs held at children's cooking schools, which have recently been gaining interest as an effective integrated educational method. Also, based on the results, the study provides information on good teaching-learning methods, which can be applied to kindergarten and elementary schools. The results of the evaluation showed that 84.1% of the respondents were satisfied with the educational aspects of the programs. People were most satisfied with the teachers' "teaching ability", and were least satisfied with "the educational fees". The satisfaction scores for the children's cooking programs were higher when they were performed in a school class environment as compared to a cultural center environment, and children who had participated for more than 12 months were more satisfied than those who had only participated 1 to 3 months. Quantitatively, of the 24 measured evaluation categories grouped into 6 fields that measured the effects of participation in the cooking programs, the greatest effects were found on the children's self-confidence and sense of achievement in the social emotion field, and the lowest effect was found on their writing ability in the language field. In addition, scores were higher when the cooking activities were performed in a private cooking school environment as compared to a cultural center environment. Scores were also higher when the educational program lasted 7 to 9 months as compared to only 1 to 3 months.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.509-515
/
2023
Despite the continued development of alternative energies, fuel consumption is increasing. In particular, the price of gasoline fluctuates greatly according to fluctuations in international oil prices. Gas stations adjust their gasoline inventory to respond to gasoline price fluctuations. In this study, news datasets is used to analyze the gasoline consumption patterns through fluctuations of the gasoline inventory. First, collecting news datasets with web crawling. Second, summarizing news datasets using KoBART, which summarizes the Korean text datasets. Finally, preprocessing and deriving the fluctuations factors through N-Gram Language Model and TF-IDF. Through this study, it is possible to analyze and predict gasoline consumption patterns.
Kyungho Seok;Johui Lee;Byeongchan Park;Seok-Yoon Kim;Youngmo Kim
Journal of the Semiconductor & Display Technology
/
v.22
no.4
/
pp.154-160
/
2023
Recently, with the activation of eBook services, books are being published simultaneously as physical books and digitized eBooks. Paper books are more expensive than e-books due to printing and distribution costs, so demand for relatively inexpensive e-books is increasing. There are cases where previously published physical books cannot be digitized due to the circumstances of the publisher or author, so there is a movement among individual users to digitize books that have been published for a long time. However, existing research has only studied the advancement of the pre-processing process that can improve text recognition before applying OCR technology, and there are limitations to digitization depending on the condition of the book. Therefore, support for book digitization services depending on the condition of the physical book is needed. need. In this paper, we propose a method to support digitalization services according to the status of physical books held by book owners. Create images by scanning books and extract text information from the images through OCR. We propose a method to recover text that cannot be extracted depending on the state of the book using BERT, a natural language processing deep learning model. As a result, it was confirmed that the recovery method using BERT is superior when compared to RNN, which is widely used in recommendation technology.
A meatadata has become an essential element in order to recommend video content to users. However, it is passively generated by video content providers. In the paper, a method for automatically generating metadata was studied in the existing manual metadata input method. In addition to the method of extracting emotion tags in the previous study, a study was conducted on a method for automatically generating metadata for genre and country of production through movie audio. The genre was extracted from the audio spectrogram using the ResNet34 artificial neural network model, a transfer learning model, and the language of the speaker in the movie was detected through speech recognition. Through this, it was possible to confirm the possibility of automatically generating metadata through artificial intelligence.
Recently, with an emphasis on software proficiency, universities are providing software education to all students regardless of their majors. However, non-majors often lack motivation for software education and perceive the unfamiliar learning content as more challenging. To address this issue, tailored software education according to the learners' characteristics is essential. Art students, for instance, with their strong visual comprehension and expressive abilities, can benefit from utilizing visual literacy to enhance the effectiveness of programming education. In this study, we propose decomposing everyday problems into flowcharts and pseudocode to construct procedural and visual images. Using the educational programming language PlayBot, we aim to analyze the effectiveness of teaching by coding to solve problems. Through this approach, students are expected to grasp programming concepts, understand problem-solving processes through computational thinking, and acquire skills to apply programming in their respective fields.
Background: Due to the importance of evidence-based research in plastic surgery, the authors of this study aimed to assess the accuracy of ChatGPT in generating novel systematic review ideas within the field of craniofacial surgery. Methods: ChatGPT was prompted to generate 20 novel systematic review ideas for 10 different subcategories within the field of craniofacial surgery. For each topic, the chatbot was told to give 10 "general" and 10 "specific" ideas that were related to the concept. In order to determine the accuracy of ChatGPT, a literature review was conducted using PubMed, CINAHL, Embase, and Cochrane. Results: In total, 200 total systematic review research ideas were generated by ChatGPT. We found that the algorithm had an overall 57.5% accuracy at identifying novel systematic review ideas. ChatGPT was found to be 39% accurate for general topics and 76% accurate for specific topics. Conclusion: Craniofacial surgeons should use ChatGPT as a tool. We found that ChatGPT provided more precise answers with specific research questions than with general questions and helped narrow down the search scope, leading to a more relevant and accurate response. Beyond research purposes, ChatGPT can augment patient consultations, improve healthcare equity, and assist in clinical decision-making. With rapid advancements in artificial intelligence (AI), it is important for plastic surgeons to consider using AI in their clinical practice to improve patient-centered outcomes.
Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.
The purpose of this study is to examine the capabilities of ChatGPT as a tool for supporting students in generating mathematical arguments that can be considered proofs. To examine this, we engaged students enrolled in a mathematics pathways course in evaluating and revising their original arguments using ChatGPT feedback. Students attempted to find and prove a method for the area of a triangle given its side lengths. Instead of directly asking students to prove a formula, we asked them to explore a method to find the area of a triangle given the lengths of its sides and justify why their methods work. Students completed these ChatGPT-embedded proving activities as class homework. To investigate the capabilities of ChatGPT as a proof tutor, we used these student homework responses as data for this study. We analyzed and compared original and revised arguments students constructed with and without ChatGPT assistance. We also analyzed student-written responses about their perspectives on mathematical proof and proving and their thoughts on using ChatGPT as a proof assistant. Our analysis shows that our participants' approaches to constructing, evaluating, and revising their arguments aligned with their perspectives on proof and proving. They saw ChatGPT's evaluations of their arguments as similar to how they usually evaluate arguments of themselves and others. Mostly, they agreed with ChatGPT's suggestions to make their original arguments more proof-like. They, therefore, revised their original arguments following ChatGPT's suggestions, focusing on improving clarity, providing additional justifications, and showing the generality of their arguments. Further investigation is needed to explore how ChatGPT can be effectively used as a tool in teaching and learning mathematical proof and proof-writing.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.17
no.4
/
pp.229-235
/
2024
Recent years have seen active research on methods for efficiently processing and interpreting large volumes of data in the fields of artificial intelligence and machine learning. One of these data processing technologies, Vector Symbolic Architecture (VSA), offers an innovative approach to representing complex symbols and data using high-dimensional vectors. VSA has garnered particular attention in various applications such as natural language processing, image recognition, and robotics. This study quantitatively evaluates the characteristics and performance of VSA methodologies by applying five VSA methodologies to the MNIST dataset and measuring key performance indicators such as encoding speed, decoding speed, memory usage, and recovery accuracy across different vector lengths. BSC and VT demonstrated relatively fast performance in encoding and decoding speeds, while MAP and HRR were relatively slow. In terms of memory usage, BSC was the most efficient, whereas MAP used the most memory. The recovery accuracy was highest for MAP and lowest for BSC. The results of this study provide a basis for selecting appropriate VSA methodologies depending on the application area.
Kim Yu Rim;Park Jeong In;Park Dong Hyun;Kang Sung Woo
Journal of Korean Society for Quality Management
/
v.52
no.3
/
pp.479-493
/
2024
Purpose: The deterioration in the quality of failure history data due to differences in interpretation of failures among workers at power plants and the lack of consistency in the way failures are recorded negatively impacts the efficient operation of power plants. The purpose of this study is to propose a system that classifies power generation facilities failures consistently based on the failure history text data created by the workers. Methods: This study utilizes data collected from three coal unloaders operated by Korea Midland Power Co., LTD, from 2012 to 2023. It classifies failures based on the results of Soft Voting, which incorporates the prediction probabilities derived from applying the predict_proba technique to four machine learning models: Random Forest, Logistic Regression, XGBoost, and SVM, along with scores obtained by constructing word dictionaries for each type of failure using LIME, one of the XAI (Explainable Artificial Intelligence) methods. Through this, failure classification system is proposed to improve the quality of power generation facilities failure history data. Results: The results of this study are as follows. When the power generation facilities failure classification system was applied to the failure history data of Continuous Ship Unloader, XGBoost showed the best performance with a Macro_F1 Score of 93%. When the system proposed in this study was applied, there was an increase of up to 0.17 in the Macro_F1 Score for Logistic Regression compared to when the model was applied alone. All four models used in this study, when the system was applied, showed equal or higher values in Accuracy and Macro_F1 Score than the single model alone. Conclusion: This study propose a failure classification system for power generation facilities to improve the quality of failure history data. This will contribute to cost reduction and stability of power generation facilities, as well as further improvement of power plant operation efficiency and stability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.