• Title/Summary/Keyword: Language Network

Search Result 1,226, Processing Time 0.033 seconds

A Suggestion for Spatiotemporal Analysis Model of Complaints on Officially Assessed Land Price by Big Data Mining (빅데이터 마이닝에 의한 공시지가 민원의 시공간적 분석모델 제시)

  • Cho, Tae In;Choi, Byoung Gil;Na, Young Woo;Moon, Young Seob;Kim, Se Hun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.79-98
    • /
    • 2018
  • The purpose of this study is to suggest a model analysing spatio-temporal characteristics of the civil complaints for the officially assessed land price based on big data mining. Specifically, in this study, the underlying reasons for the civil complaints were found from the spatio-temporal perspectives, rather than the institutional factors, and a model was suggested monitoring a trend of the occurrence of such complaints. The official documents of 6,481 civil complaints for the officially assessed land price in the district of Jung-gu of Incheon Metropolitan City over the period from 2006 to 2015 along with their temporal and spatial poperties were collected and used for the analysis. Frequencies of major key words were examined by using a text mining method. Correlations among mafor key words were studied through the social network analysis. By calculating term frequency(TF) and term frequency-inverse document frequency(TF-IDF), which correspond to the weighted value of key words, I identified the major key words for the occurrence of the civil complaint for the officially assessed land price. Then the spatio-temporal characteristics of the civil complaints were examined by analysing hot spot based on the statistics of Getis-Ord $Gi^*$. It was found that the characteristic of civil complaints for the officially assessed land price were changing, forming a cluster that is linked spatio-temporally. Using text mining and social network analysis method, we could find out that the occurrence reason of civil complaints for the officially assessed land price could be identified quantitatively based on natural language. TF and TF-IDF, the weighted averages of key words, can be used as main explanatory variables to analyze spatio-temporal characteristics of civil complaints for the officially assessed land price since these statistics are different over time across different regions.

A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)

  • Moon, Seok Hyung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.89-115
    • /
    • 2019
  • This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Preliminary Landscape Improvement Plan for Gu-ryong Village (구룡 해안마을 경관형성 기본계획)

  • Kim, Yun-Geum;Choi, Jung-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.23-34
    • /
    • 2012
  • This Study is about the "Comprehensive Landscape Improvement Plan for Gu-ryoung Seaside Village that was one of most exhibited projects for developing sea villages." The formulations of the plan were supervised by the Ministry of Land, Transport, and Maritime Affairs and were executed by the Goheung Country. Rather than proposing renovations for the landscape, this study maintains the existing order and attempts to examine the plan by scrutinizing the vernacular design language of the landscape. In the study, community members had the opportunity to express their opinions and ideas about the community through workshops composed of community participation programs, and participated in the decision-making process through consultation meetings. The conclusion of this study was relevant to the activities of the committee on landscape improvement. The Comprehensive Landscape Improvement Plan has three objectives: (1) resorting and modifying the natural landscape, (2) restructuring the roadways, and (3) modifying key spaces. In the end, the role of Gu-ryong Mountain as a background of the landscape was focused on tree planting drives that were undertaken, and accessibility to the sea front was improved. Second, in restructuring the roadways, rough roads were restored and unconnected roads were connected to ensure a network of roads along the sea front, inner roads in the village, roads at the Fringes Mountains, and stone roads on the mud flat. In addition, roads were named according to the character of the landscape and signs were installed. Finally, the existing key spaces, in which community members came together, were restored and new key spaces were created for the outdoor activities of the inhabitants and the diverse experience of visitors. A guideline was also created to regulate private areas such as roofs, walls, fences of residential buildings, and private container boxes and fishing gear along the sea front. The strength of this study is that it is seeking to determine the greatest potential of the landscape and set the plan by examining the lives of community members. Some problems were found during the development of this study. Further, there were problems in the community's understanding as elaborated below. First is the gap between community members' awareness and practice. Even though they were aware of the problems with the village landscape, they hesitated to implement improvements. Second, community members have misunderstandings about the landscape the improvement plan. The local government and the residents have understood this plan as a development project; for example, new building construction or the extension of roads. Third, residents are not aware that continuous attention and improvements are required for the upkeep of the landscape in the sea village. The plan to improve the landscape should promote a balance between making the area as a tourist attraction and maintaining the lives and cultural activities, because the sea village system incorporates settlements, economy, and culture.

Design of Translator for generating Secure Java Bytecode from Thread code of Multithreaded Models (다중스레드 모델의 스레드 코드를 안전한 자바 바이트코드로 변환하기 위한 번역기 설계)

  • 김기태;유원희
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.148-155
    • /
    • 2002
  • Multithreaded models improve the efficiency of parallel systems by combining inner parallelism, asynchronous data availability and the locality of von Neumann model. This model executes thread code which is generated by compiler and of which quality is given by the method of generation. But multithreaded models have the demerit that execution model is restricted to a specific platform. On the contrary, Java has the platform independency, so if we can translate from threads code to Java bytecode, we can use the advantages of multithreaded models in many platforms. Java executes Java bytecode which is intermediate language format for Java virtual machine. Java bytecode plays a role of an intermediate language in translator and Java virtual machine work as back-end in translator. But, Java bytecode which is translated from multithreaded models have the demerit that it is not secure. This paper, multhithread code whose feature of platform independent can execute in java virtual machine. We design and implement translator which translate from thread code of multithreaded code to Java bytecode and which check secure problems from Java bytecode.

  • PDF

GenAI(Generative Artificial Intelligence) Technology Trend Analysis Using Bigkinds: ChatGPT Emergence and Startup Impact Assessment (빅카인즈를 활용한 GenAI(생성형 인공지능) 기술 동향 분석: ChatGPT 등장과 스타트업 영향 평가)

  • Lee, Hyun Ju;Sung, Chang Soo;Jeon, Byung Hoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.65-76
    • /
    • 2023
  • In the field of technology entrepreneurship and startups, the development of Artificial Intelligence(AI) has emerged as a key topic for business model innovation. As a result, venture firms are making various efforts centered on AI to secure competitiveness(Kim & Geum, 2023). The purpose of this study is to analyze the relationship between the development of GenAI technology and the startup ecosystem by analyzing domestic news articles to identify trends in the technology startup field. Using BIG Kinds, this study examined the changes in GenAI-related news articles, major issues, and trends in Korean news articles from 1990 to August 10, 2023, focusing on the emergence of ChatGPT before and after, and visualized the relevance through network analysis and keyword visualization. The results of the study showed that the mention of GenAI gradually increased in the articles from 2017 to 2023. In particular, OpenAI's ChatGPT service based on GPT-3.5 was highlighted as a major issue, indicating the popularization of language model-based GenAI technologies such as OpenAI's DALL-E, Google's MusicLM, and VoyagerX's Vrew. This proves the usefulness of GenAI in various fields, and since the launch of ChatGPT, Korean companies have been actively developing Korean language models. Startups such as Ritten Technologies are also utilizing GenAI to expand their scope in the technology startup field. This study confirms the connection between GenAI technology and startup entrepreneurship activities, which suggests that it can support the construction of innovative business strategies, and is expected to continue to shape the development of GenAI technology and the growth of the startup ecosystem. Further research is needed to explore international trends, the utilization of various analysis methods, and the possibility of applying GenAI in the real world. These efforts are expected to contribute to the development of GenAI technology and the growth of the startup ecosystem.

  • PDF

Analysis of the Impact of Generative AI based on Crunchbase: Before and After the Emergence of ChatGPT (Crunchbase를 바탕으로 한 Generative AI 영향 분석: ChatGPT 등장 전·후를 중심으로)

  • Nayun Kim;Youngjung Geum
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.53-68
    • /
    • 2024
  • Generative AI is receiving a lot of attention around the world, and ways to effectively utilize it in the business environment are being explored. In particular, since the public release of the ChatGPT service, which applies the GPT-3.5 model, a large language model developed by OpenAI, it has attracted more attention and has had a significant impact on the entire industry. This study focuses on the emergence of Generative AI, especially ChatGPT, which applies OpenAI's GPT-3.5 model, to investigate its impact on the startup industry and compare the changes that occurred before and after its emergence. This study aims to shed light on the actual application and impact of generative AI in the business environment by examining in detail how generative AI is being used in the startup industry and analyzing the impact of ChatGPT's emergence on the industry. To this end, we collected company information of generative AI-related startups that appeared before and after the ChatGPT announcement and analyzed changes in industry, business content, and investment information. Through keyword analysis, topic modeling, and network analysis, we identified trends in the startup industry and how the introduction of generative AI has revolutionized the startup industry. As a result of the study, we found that the number of startups related to Generative AI has increased since the emergence of ChatGPT, and in particular, the total and average amount of funding for Generative AI-related startups has increased significantly. We also found that various industries are attempting to apply Generative AI technology, and the development of services and products such as enterprise applications and SaaS using Generative AI has been actively promoted, influencing the emergence of new business models. The findings of this study confirm the impact of Generative AI on the startup industry and contribute to our understanding of how the emergence of this innovative new technology can change the business ecosystem.

  • PDF

A Curricular Study on AI & ES in Library and Information Science (문헌정보학에서의 인공지능과 전문가시스템 교육과정 연구)

  • Koo Bon-Young;Park Mi-Young
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.2
    • /
    • pp.211-232
    • /
    • 1998
  • It is the purpose of this study to specify contents of Library and Information Science to train information professional to meet environment change of technology and system. Among them. recognizing necessity of present Artificial Intelligence and Export System (AI and ES) required by changing environment of latest Information technology, it is also the purpose of this work to figure out fundamental data and the way of solution how to introduce what contents out of AI and ES to Library and Information Science. The briefed results are as follows. 1. Due to rapid change of high Information technology and computer application it is the most important essential points, In order of Importance, in finding available network source, In indexing on-line data base, in analysing and design information system. and in computer application ability. 2. In contents of AI and ES, most Important training portion for Library and Information Science are : data base treating, thesaurus, natural language processing. and knowledge representation. 3. Library and information science professors recognize It necessary for bigger number of Library and Information Science students to be educated artificial intelligence and expert system. 4. During forthcoming age it shows more important reorganization that artificial intelligence and expert system improves information professional in reference service, cataloging, classification, information retrieval, and documentation delivery 5. According to library and information science professors more important reorganization on the subject of AI and ES, the curricular on AI and ES is, forthcoming, to be Introduced to curricular on library and information science in the nation, In order of importance, (see 1. above).

  • PDF