• 제목/요약/키워드: Langmuir-Hinshelwood model

검색결과 26건 처리시간 0.023초

MCFC의 예비 개질 반응 메커니즘 연구 (Study of reaction mechanism in pre-reforming for MCFC)

  • 이우형;박용기
    • 산업진흥연구
    • /
    • 제3권2호
    • /
    • pp.1-8
    • /
    • 2018
  • 본 연구에서는 탄화수소 개질을 위한 예비 개질기에서 에탄의 반응 메커니즘과 이에 적합한 반응속도식에 대한 연구를 수행하였다. 반응 mechanism 분석을 통해 ethane의 개질 반응 중 (CO2+H2,C2H6+H2,C2H6+H2O)3개의 반응이 진행되는 것을 확인할 수 있었으며, 각각의 반응 속도 (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) 를 구하였다. 이를 통해 C2H6+H2O반응이 rate determining step (RDS)임을 확인하고, Langmuir-Hinshelwood model (L-H model)을 통해 이 반응의 반응식을 r=kS*(KAKBPC2H6PH2O)/(1+KAPC2H6+KBPH2O)2 (KA=2.052,KB=6.384,$kS=0.189{\times}10-2$)로 나타낼 수 있었다. 이렇게 얻어진 반응식은 반응 메커니즘을 고려하지 않고 유도된 power rate law와 비교하였으며, power rate law는 좁은 농도 변화 영역 (ethane 약 2.5-4%, water 약 60-75%)에서는 비교적 유사한 fitting이 이루어졌지만, 넓은 농도 변화영역에서는 반응 mechanism을 토대로 얻은 L-H model 반응식이 실험값과 더 유사한 값을 보이는 것을 확인하였다.

수첨탈황과 탈질반응에서 Thiophene과 Pyridine의 상호영향과 그 속도론적 해석 (Interactions between Hydrodesulfurization of Thiophene and Hydrodenitrogenation of Pyridine and the Kinetic Analysis)

  • 박종희;한창훈;김경림
    • 한국대기환경학회지
    • /
    • 제4권1호
    • /
    • pp.13-22
    • /
    • 1988
  • Interactions between hydrodesulfurization of thiophene and hydrodenitrogenation of pyridine and the kinetic analysis were studied over $Ni-W/\gamma-Al_2O_3$ catalysts and this study was made at temperatures ranging from 473-673 K and at total pressures ranging from 10-25 $\times 10^5$ Pa. Hydrodesulfurization of thiophene was inhibited by presence of pyridine at all temperatures studied, and the rate of pyridine hydrodenitrogenation was slower than that of thiophene hydrodesulfurization in the operating conditions. Pyridine hydrodenitrogenation was also inhibited by the presence of thiophene at low temperatures but was enhanced by the thiophene at temperatures higher than 613K. Thiophene reaction rate was determined by multiple linear regression analysis using Langmuir-Hinshelwood-Hougen-Watson model and the result was given to be $r = kP_T^p_H/(1+K_Tp_T+K_Pp_P)^2$. At each temperature, reaction rate constants and absorption equilibrium equilibrium constants were determined and the activation energy was 12.98 kcal/gmol from Arrhenius plot.

  • PDF

A Kinetic Study on the Photocatalytic Degradation of Gas-Phase VOCs Using TiO$_2$ photocatalyst

  • Kim, Sang-Bum;Jo, Young-Min;Hong, Sung-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E3호
    • /
    • pp.117-124
    • /
    • 2001
  • The present paper examined the kinetics of photocatalytic degradation of volatile organic compounds (VOCs) including gaseous trichloroethylene (TCE) and acetone. In this study, we examined the effects of the initial concentration of VOCs and the light intensity of ultra-violet (UV). A batch photo-reactor was specifically designed for this work. The photocatalytic degradation rate increased with the initial concentration of VOCs but remained almost constant beyond a certain concentration. It matched well with the Langmuir-Hinshelwood (L-H) kinetic model. When the effect of light intensity was concerned, it was found that photocatalytic degradation occurs in two regimes with respect to light intensity.

  • PDF

광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가 (In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor)

  • 리즈완 아마드;김진규;김종학;김정환
    • 멤브레인
    • /
    • 제27권4호
    • /
    • pp.328-335
    • /
    • 2017
  • 메조포러스 공극구조를 갖는 광촉매 멤브레인은 다양한 환경기술에 적용될 수 있다. 본 연구에서는 $TiO_2$ 층을 형성시킨 광촉매 반응기용 세라믹 멤브레인을 개발하고 이를 염색용액 처리에 적용하였다. 높은 공극률과 균질성을 지닌 $TiO_2$ 광촉매층을 그라프트 공중합체를 사용하여 제조하였다. 멤브레인은 광촉매 반응기와 멤브레인 여과를 결합시킨 하이브리드 광촉매 반응기에 성공적으로 적용하였다. 실험결과 정렬된 구조의 $TiO_2$ 층이 $Al_2O_3$ 지지체에 형성되었다. $TiO_2$ 층 형성 후 제조된 세라믹 분리막의 순수 투과도는 형성된 광촉매 층 저항으로 감소하였다. 정렬된 구조의 $TiO_2$ 층은 UV 결합 시 5시간 안에 완벽한 염색용액 분해를 달성시킬 수 있었다. 광촉매 멤브레인의 염색용액 분해는 Langmuir-Hinshelwood 흡착 모델로 잘 설명할 수 있었다. 또한 $TiO_2$ 층이 고정화된 세라믹 멤브레인의 model Congo Red에 대한 1차 속도상수는 $Al_2O_3$ 지지체 단독인 경우에 비해 약 6배 정도 큰 값을 나타내었다(0.0081 vs. $0.0013min^{-1}$).

$NH_3$-SCR 방법에 의한 디젤 배기 내 De-$NO_x$ 과정에서의 DOC에 의한 영향과 저감 성능 변화 (The Effect of an Oxidation Precatalyst on the $NO_x$ Reduction by $NH_3$-SCR Process in Diesel Exhaust)

  • 정승채;윤웅섭
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.68-76
    • /
    • 2008
  • Diesel $NO_x$ reduction by $NH_3$-SCR in conjunction with the effective oxidation precatalyst was analytically investigated. Physicochemical processes in regard to $NH_3$-SCR $NO_x$ reduction and catalytic NO-$NO_2$ conversion are formulated with detailed descriptions on the commanding reactions. A unified model is correctly validated with experimental data in terms of extents of $NO_x$ reduction by SCR and NO-$NO_2$ conversion by DOC. The present deterministic model based on the rate expressions of Langmuir-Hinshelwood reaction scheme finds a conversion extent directly. A series of numerical experiments concomitant with parametric analysis of the $NO_x$ reduction was conducted. $NO_x$ reduction is promoted in proportion to DOC volume ar lower temperatures and an opposite holds at lower space velocity and intermediate temperatures. $NO_x$ conversion is weakly correlated to the space velocity and the DOC volume at higher exhaust temperature. In DOC-SCR system, the $NO_x$ reduction efficiency depends on the $NH_3/NO_x$ ratio.

천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구 (Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane)

  • 박준근;이신구;임성광;배중면
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법 (New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect)

  • 응웬 딩 궁 디엔;조광연;오원춘
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.705-713
    • /
    • 2017
  • 독창적 물질인 $Bi_2WO_6-GO-TiO_2$ 나노복합체를 쉬운 수열법에 의해 성공적으로 합성하였다. 수열반응을 하는 동안, 그래핀 시트 위에 $Bi_2WO_6$$TiO_2$를 도포하였다. 합성한 $Bi_2WO_6-GO-TiO_2$ 복합체형 광촉매는 X-선 회절법(XRD), 주사전자현미경(SEM), 에너지 분산 X-선(EDX) 분석, 투과전자현미경(TEM), 라만분광법, UV-Vis 확산반사 분광법(UV-vis-DRS), 및 X-선 광전자분광기(XPS)에 의하여 특성화하였다. $Bi_2WO_6$ 나노입자는 불규칙한 dark-square block 나노 플페이트 형상을 보였으며, 이산화티탄 나노입자는 퀜텀 도트 사이즈로 그래핀 시트 위 표면을 덮고 있었다. 로다민 비의 분해는 농도감소의 측정과 함께 UV 분광법에 의하여 관찰하였다. 합성된 물질의 광촉매 반응은 Langmuir-Hinshelwood 모델과 띠 이론으로 설명하였다.

스펀지에 고정한 광촉매를 이용한 안료의 탈색 (Decolorization of Dye Using Immobilized Photocatalyst onto Sponge)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제31권5호
    • /
    • pp.415-422
    • /
    • 2005
  • The photocatalytic decolorization of Reactive Red 2B(RR2B) was studied using immobilized photocatalyst/UV System. Two pairs of 20 W UV-B and UV-C lamps were employed as the light source. Immobilization of $TiO_2$ was carried out using sponge (as the photocatalyst body) and silicone sealant(as the binder). The effects of parameters such as the thickness, pore size of sponge photocatalyst and attached material on the reactor bottom were investigated. The results showed that the optimum thickness of sponge photocatalyst was 1 cm. Decolorization of reactor which had the bottom coated $TiO_2$ was higher than that of reactor attached aluminum plate. Decolorization of photocatalyst with large pore size(mean pore size, 3.8 mm) was higher than that of the small(mean pore size, 1.75 mm). Initial decolorization of RR2B could be descrived using the Langmuir-Hinshelwood(L-H) model and gave constant values of $0.55mg/l{\cdot}min(k)\;and\;2.65{\times}10^{-2}l/mg(K)$, respectively.

수중 Trichloroethylenel의 광촉매 분해특성에 관한 연구 (Photocatalytic Degradation of Trichloroethylene in Aqueous Phase)

  • 조성혜;남주희;김일규
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.555-564
    • /
    • 2011
  • The photocatalytic degradation of trichloroethylene (TCE) in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ get at $500^{\circ}C$ for 1hr. The Langmuir-Hinshelwood model is applicable to describe the photodegradation, which indicates that adsorptionof the solute on the surface of $TiO_2$ particles plays an important role in photodegradation. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photodegradation efficiencies with $TiO_2$ including Pt, Pd and Nd are lower than pure $TiO_2$ powder. The effect of pH is investigated and the maximum photodegradation efficiency is obtained at pH 7. In addition, the intermediates such as dichloromethane, chloroform, and trichloroethane are detected during the photodegradation of TCE.

SiC의 염소화에 의한 다공성 탄소 입자 제조 (Preparation of Porous Carbon by Chlorination of SiC)

  • 박회경;박균영;강태원;장희동
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.173-180
    • /
    • 2012
  • SiC particles, 8.3 ${\mu}m$ in volume average diameter, were chlorinated in an alumina tubular reactor, 2.4 cm in diameter and 32 cm in length, with reactor temperature varied from 100 to $1200^{\circ}C$. The flow rate of the gas admitted to the reactor was held constant at 300 cc/min, the mole fraction of chlorine in the gas at 0.1 and the reaction time at 4 h. The chlorination was negligibly small up to the temperature of $500^{\circ}C$. Thereafter, the degree of chlorination increased remarkably with increasing temperature until $900^{\circ}C$. As the temperature was increased further from 900 to $1200^{\circ}C$, the increments in chlorination degree were rather small. At $1200^{\circ}C$, the chlorination has nearly been completed. The surface area of the residual carbon varied with chlorination temperature in a manner similar to that with the variation of chlorination degree with temperature. The surface area at $1200^{\circ}C$ was 912 $m^{2}/g$. A simple model was developed to predict the conversion of a SiC under various conditions. A Langmuir-Hinshelwood type rate law with two rate constants was employed in the model. Assuming that the two rate constants, $k_{1}$ and $k_{2}$, can be expressed as $A_{1e}^{-E_{1}/RT}$ and $A_{2e}^{-E_{2}/RT}$, the four parameters, $A_{1}$, $E_{1}$, $A_{2}$, and $E_{2}$ were determined to be 32.0 m/min, 103,071 J/mol, 2.24 $m^{3}/mol$ and 39,526 J/mol, respectively, through regression to best fit experimental data.