• 제목/요약/키워드: Langmuir films

검색결과 367건 처리시간 0.021초

$\pi$-A Isotherms and Electrical Properties of Polyamic acid Alkylamine salts(PAAS) Langmuir-Blodgett Films

  • Kim, Tae-Wan;Park, Jun-Su;Cho, Jong-Sun;Kang, Dou-Yol
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권10호
    • /
    • pp.60-65
    • /
    • 1998
  • Deposition conditions, surface morphology, and electrical properties of polyamic acid alkylamine salts (PAAS) Langmuir-Blodgett(LB) films have been investigated through a study of surface pressure-area $\pi$-A isotherms, AFM (atomic force microscopy), and current-voltage characteristics. To obtain the optimum conditions of film deposition, the $\pi$-A isotherms were examined by varying temperature, barrier moving speed, dipping speed, spreading amount of solution etc. The Z-type LB films were made at the surface pressure of 5 mN m-1 and 25 mN m-1 for the AFM study; the former surface pressure forms the gas phase and the latter one forms the solid phase. The LB film made in the gas phase show domains with a size of about 200 A diameter and 70 A height. However, the LB films made in the solid phase show a very smooth surface with 2 A surface roughness. In the current-voltage characteristics measured along the perpendicular direction of the films, ohmic conduction has been observed below 105 V cm-1 and the calculated electrical conductivity is about 10-13 S cm-1. Nonohmic conduction has been observed above = 10-11 V cm and the conduction mechanism can be explained by the Schottky effect.

  • PDF

LB법을 이용한 Hexadecyl Dipyridinium-$(TCNQ^-)_2$의 박막 제작과 물리적 특성 연구 (A study on the deposition conditions and physical properties of the Hexadecyl Dipyridinium-$(TCNQ^-)_2$ thin films with Langmuir-Blodgett technique)

  • 이용수;신동명;김태완;깅도열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1722-1724
    • /
    • 1996
  • Enhancing the electrical conductivity of the ultrathin organic films is one of the important factors for the development of molecular electronic devices. The Langmuir-Blodgett(LB) technique has recently been attracted as out of the ways of deposition ultrathin films. We have studied manufacturing conditions and physical properties of Hexadecyl Dipyridinium-$(TCNQ^-)_2$ LB films made by Kuhn type apparatus. A ${\pi}-A$ isotherm shows that a limiting area is around $180{\AA}^2/molecule$ and a proper surface pressure for a deposition is around 22mN/m. A transfer ratio shows that Hexadecyl Dipyridinium-$(TCNQ^-)_2$ is able to be deposited as an Y-type. UV /visible absorption spectra shows that TCNQ dimer peak is apeared at about 600nm in LB films. In solution, $TCNQ^-$ peak is observed at about 400nm and charge transfer band at $830{\sim}900nm$. A horizontal conductivity of the Hexadecyl Dipyridinium-$(TCNQ^-)_2$ LB film is about $10^{-7}(S/cm)$.

  • PDF

유기초박막의 산화-환원 반응에 관한 연구 (A Study on the Oxidation-reduction Reaction of Organic Thin Films)

  • 박근호;송주영
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.724-731
    • /
    • 2006
  • We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with 4-octyl-4'-(5-carboxylpentamethyleneoxy)azobenzene (denoted as 8A5H) and phospholipid(L-a-dimyristoylphosphatidylcholine, denoted as DMPC and L-a-dilauroylphosphayidylcholine, denoted as DLPC). The LB films of 8A5H, 8A5H-DMPC and 8A5H-DLPC mixture monolayers were deposited by using the LB method on the indium tin oxide(ITO) glass. The electrochemical properties measured by using cyclic voltammetry with a three-electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0 mol/L) of $NaClO_4$ solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rates were 50, 100, 150 and 200 mV/s, respectively. As a result, LB films of 8A5H and 8A5H-DLPC mixture monolayers appeared irreversible process caused by only the oxidation current from the cyclic voltammogram and LB films of 8A5H-DMPC monolayer mixture was found to be caused by a reversible oxidation-reduction process.

Dry Etching of BST using Inductively Coupled Plasma

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권2호
    • /
    • pp.46-50
    • /
    • 2005
  • BST thin films were etched with inductively coupled CF$_{4}$/(Cl$_{2}$+Ar) plasmas. The etch characteristics of BST thin films as a function of CF$_{4}$/(Cl$_{2}$+Ar) gas mixtures were analyzed using optical emission spectroscopy (OES) and Langmuir probe. The BST films in CF$_{4}$/Cl$_{2}$/Ar plasma is mainly etched by the formation of metal chlorides which depends on the emission intensity of the atomic Cl and the bombarding ion energy. The maximum etch rate of the BST thin films was 53.6 nm/min because small addition of CF$_{4}$ to the Cl$_{2}$/Ar mixture increased chemical and physical effect. A more fast etch rate of BST films can be obtained by increasing the DC bias and the RF power, and lowering the working pressure.

(N-docosyl quinolinium)-TCNQ(1:2) 전하 이동 착물 Langmuir-Blodgett막의 분자 배향에 관한 연구 (A Study on the Molecular Orientation of (N-docosyl quinolinium)-TCNQ(1:2) Charge Transfer Complex Langmuir-Blodgett Films)

  • 정순욱;정회걸
    • 한국재료학회지
    • /
    • 제10권8호
    • /
    • pp.564-568
    • /
    • 2000
  • Langmuir-Blodgett(LB) 법은 미래의 분자전자소자를 위한 가장 유력한 수단이며, 이러한 분자박막 소자는 그 성질이 분자는 배향에 영향을 박데 되므로 현재 새로운 물질을 이용하여 분자전자소자의 제작에 있어 관심을 모으고 있다. 본 연구에서는 (N-docosyl quinolinium)-TCNQ(1:2) 전하 이동 착물 LB 막의 분자 배향을 UV/vis 편광흡수 스펙트럼과 FT-IR transmission 및 reflection-absorption 스펙트럼의 흡수강도를 비교하여 정량적으로 평가하였다. 그 결과 TCNQ의 transition dipole moment의 각은 약 56~58。 였으며, 알킬 고리의 경사각은 약 11.1~13。였다. 제작된 Z-형 LB 막의 표면은 고압에서 중앙 높이 차가 3~4$\AA$으로 평탄하였다.

  • PDF

자극속도에 따른 유기박막의 전기 특성 (Electrical Properties of Organic Thin Films by Stimulus Speed)

  • 박석순;김재민;정헌상;김창석;이권현;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 1997
  • Langmuir-Blodgett(LB) method is knowers as a unique method for preparing organic thin films, which can control thickness of the films in molecular level, and many kinds of ultra thin films of functional molecules have been prepared using this method. in this study, the electrical properties of phospholipid monolayers on a water surface was inve stigated by means of stimulus speed(40mm/min, 60mm/min).

  • PDF

LB 초박막의 전기전도특성(I) (Characteristics of Electrical Conduction in LB Ultra Thin Films)

  • 이원재;최명규;권영수;강도열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1990년도 추계학술대회 논문집
    • /
    • pp.74-77
    • /
    • 1990
  • In this paper, we study the electrical conduction mechanism in Langmuir-Boldgett(LB) ultra thin films. The LB device has a metal/Lb films/metal sandwich structure, where metal is electrode. In our experiments, the temperature does not depend on the current at below 0$^{\circ}C$. This phenomena show that the electrical conduction current is a tunnel current inherent to LB ultra thin films.

미리스트산과 스테아르산 혼합 LB막의 안정성에 관한 연구 (A Study on the Stability of Langmuir-Blodgett Films Mixed with Myristic Acid and Stearic Acid)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제34권2호
    • /
    • pp.376-381
    • /
    • 2017
  • 지방산 혼합물 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. 지방산혼합물 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 0.01N $KClO_4$ 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 지방산혼합물 LB막은 순환전압전류곡선으로부터 산화전류로 인한 비가역 공정으로 나타났다. 지방산혼합물 LB막은 전해질농도가 0.01 N $NaClO_4$ 용액에서 확산계수(D)는 각각 $7.9{\times}10^{-2}cm^2s^{-1}$을 얻었다.

지방산과 인지질 혼합 유가초박막의 전기화학적 특성 (Electrochemical Properties of Organic Ultra Thin Films of Fatty Acid and Phospholipid Mixture)

  • 박근호;최성현;손태철;송주영
    • 한국응용과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.137-146
    • /
    • 2006
  • We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with fatty acid (8A5H) and phospholipid (DLPE, DMPC, and DPPA). LB films of 8A5H monolayer and 8A5H-phospholipid mixture were deposited using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured using cyclic voltammetry with three-electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0 mol/L) of $NaClO_4$ solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate was 50, 100, 150 and 200 mV/s, respectively. As a result, LB films of fatty acid and phospholipid (8A5H/DLPE and DPPA) appeared irreversible process were caused by only the reduction current from the cyclic voltammogram and LB film of 8A5H-DMPC mixture was found to be caused by a reversible oxidation-reduction process.

PAAS LB 박막의 열자격 변위 전류에 관한 연구 (A study on the thermally-stimulated displacement current(TSDC) of the PAAS Langmuir-B1odgett(LB) films)

  • 이호식;김상걸;송민종;최명규;이원재;김태완;강도열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 제2회 학술대회 논문집 일렉트렛트 및 응용기술전문연구회
    • /
    • pp.11-14
    • /
    • 2000
  • This paper describes a thennally stimulated displacement current(TSDC) of polyamic acid alkylamine salts(PAAS) Langmuir-Blodgett(LB) films, which is a precursor of polyimide(PI). The TSDC measurements of PAAS LB film were performed from room temperature to about $250^{\circ}C$ and the temperature was increased at a rate of $0.2^{\circ}C/s$. This show that this is TSDC peaks at about $70^{\circ}C$ in the arachidic acid LB films, and at about $70^{\circ}C$ and $160^{\circ}C$ in the PAAS LB films. Results of this measurements indicate that one small peak at $70^{\circ}C$ is resulted from a softening of the alkyl group and the large peak at $160^{\circ}C$ is possibly due to dipole moment of C-O group in the PAAS molecule. We have calculated the vertical component of dipole moment of the P AAS LB film out of the TSDC curves. It shows that the dipole moment of PAAS LB film is about -40mD at $70^{\circ}C$ and about 200mD at $160^{\circ}C$ in the first measurement of TSDC. In the second measurement of TSDC of PAAS LB film after cooling down to room temperature, the TSDC peaks are almost disappeared.

  • PDF