• 제목/요약/키워드: Langmuir Isotherm Adsorption

검색결과 506건 처리시간 0.027초

석탄회부착활성탄의 제조 및 중금속 제거에 관한 연구 (A Study on the Preparation of the Fly ash Adhesion-Activated Carbon and on the Removal of Heavy Metals)

  • 문옥란;신대윤;고춘남
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.1-8
    • /
    • 1999
  • This study was aimed ultimately to develop an adsorption process treating heavy metal wastewater by utilizing activated carbon using flyash. The affecting factors in adsorption process on heavy metal by flyash adhesion-activated carbon are s follows. Factors such as pH, and quality of activated carbon, and reaction time made batch adsorption isotherm described adsorption capacity was made use of the investigation to evaluate adsorptive possibility of heavy metal.As the results of this study, H ion has influence on adsorption of heavy metal if pH is low. As reaction time is transformed, factors such as optimum reaction time is taken into consideration an adsorptive process of heavy metal because an adsorption and a reduction process occur. Adsorption isotherm of adhesion-activated carbon was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, l/n were obtained in the range of 0.1~0.5.

  • PDF

Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구 (Biosorption of Heavy Metals by Saccharomyces uvarum)

  • 안갑환;서근학
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.141-141
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구 (Biosorption of Heavy Metals by Saccharomyces uvarum)

  • 안갑환;서근학
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.527-534
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

  • PDF

Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

  • Tahermansouri, Hasan;Beheshti, Marzieh
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3391-3398
    • /
    • 2013
  • The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석 (Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon)

  • 이종집
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.458-465
    • /
    • 2020
  • 활성탄에 의한 acid fuchsin (AF) 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성치를 흡착제의 양, pH, 초기 농도, 접촉시간 및 온도를 변수로 하여 수행하였다. 활성탄을 사용한 AF의 흡착에 대한 pH의 영향은 산성(pH 8)에서 흡착백분율이 높은 욕조 현상을 나타냈다. 등온흡착 데이터는 Freundlich, Langmuir, Dubinin-Radushkevich 등온흡착식에 맞춰 보았다. Freundlich 식이 가장 높은 일치도를 나타냈으며, 흡착메카니즘이 다분자층 흡착임을 알았다. 흡착용량은 온도증가와 함께 증가하였다. Freundlich의 분리계수는 이 흡착공정이 적합한 처리공정임을 나타냈다. Dubinin-Radushkevich 등온흡착식에 의해 평가된 흡착 에너지는 활성탄에 의한 AF의 흡착이 물리 흡착임을 확인시켰다. 흡착동력학은 유사이차반응속도식에 잘 맞았다. 입자내 확산 모델에 의해 흡착점에서의 표면 확산이 율속단계로 평가되었다. 흡착공정의 활성화 에너지와 엔탈피 변화는 각각 21.19 kJ/mol, 23.05 kJ/mol 이었다. Gibbs 자유 에너지 변화는 흡착반응이 온도가 높아질수록 자발성이 더 진다는 것을 알려주었다. 양의 엔트로피는 이공정이 비가역적이라는 것을 나타냈다. 등량 흡착열은 본질덕으로 물리흡착임을 나타냈다.

단결정 Pt(100)/수용액 계면에서 전가흡착된 수소의 Langmuir흡착등온식 (The Langmuir Adsorption Isotherms of the Electroadsorbed Hydrogens at the Single Crystal Pt(100)/Aqueous Electrolyte Interfaces)

  • 천장호;전상규
    • 전기화학회지
    • /
    • 제4권1호
    • /
    • pp.14-20
    • /
    • 2001
  • 단결정 Pt(100)/0.5M $H_2SO_4$ 및 0.5M LiOH수용액 계면에서 저전위 수소흡착(UPD H)과 과전위 수소흡착(OPD H)에 관한 Langmuir흡착등온식을 위상이동 방법을 이용하여 연구 조사하였다. 최적 중간주파수에서 위상이동 변화$({-\varphi}\;vs.\;E)$는 Langmuir흡착등온식$(\theta\;vs.\;E)$의 추정에 적용할 수 있는 유용한 실험 방법이다. 단결정 Pt(100)/0.5M $H_2SO_4$ 수용액 계면에서 과전위 수소흡착에 기인한 흡착평형상수(K)와 흡착표준자유에너지$({\Delta}G_{ads})$는 각각 $1.5\times10^{-4}$와 21.8kJ/mol이다. 단결정 Pt(100)/0.5M LiOH 수용액 계면에서 K는 음전위에 따라 1.9(UPD H)에서 $6.8\times10^{-6}$ (OPD H)또는 그 반대로 전이한다. 마찬가지로, ${\Delta}G_{ads}$는 음전위에 따라 -1.6kJ/mol (UPD H)에서 29.5kJ/mol (OPD H) 또는 그 반대로 전이한다. 전극속도론적 패러미터$(K,\; {\Delta}G_{ads})$의 전이는 단결정 Pt(100)전극표면의 UPD H와 OPD H에 기인한다. UPD H와 OPD H는 음극 $H_2$발생 반응을 위한 순차적 과정이 아니라 전극표면의 수소 흡착부위에 기인하는 독립적 과정이다.

미생물흡착을 이용한 수은과 납의 제거에 관한 비교 연구 (A Comparative Study for Removal of Mercury and Lead by Microorganisms)

  • 서정호;서명교;곽영규;강신묵;노종수;이국의;최윤찬
    • 한국환경보건학회지
    • /
    • 제24권1호
    • /
    • pp.98-103
    • /
    • 1998
  • A study on the removal of mercury and lead by microorganisms, Saccharomyces cerevisiae and Aureobasidium pullulans, was performed, in which the comparison of adsorption model between these two heavy metals was done. The amounts of mercury removed were more than those of lead in both microorganisms. In case of mercury, the adsorption isotherm of S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. In the case of lead, however, the adsorption isotherm had opposite results. The adsorption rate of mercury to S. cerevisiae was faster than that of A. pullulans, but in the case of lead, it revealed contrary results. It seems, therefore, that the type of microorganisms used as biosorbents should be selected differently with the type of heavy metals removed for applying these to real adsorption process.

  • PDF

Surface Modified Agave sisalana as an Adsorbent for the Removal of Nickel from Aqueous Solutions - Kinetics and Equilibrium Studies

  • Padmini., E.;Kalavathy, M. Helen;Lima Rose, Miranda
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.97-104
    • /
    • 2008
  • In the present study Sisal fiber obtained from the leaves of Agave sisalana has been chosen to validate its viability as an adsorbent for the removal of Nickel from aqueous solutions. The material was also surface modified and its effect on adsorption of Nickel was also studied. Agave sisalana fiber was found to be a cheap and effective adsorbent doing away with the need to activate the material therby reducing processing cost. The equilibrium studies indicated that the adsorption capacity of raw fiber and the surface modified fiber was 8.66 and 9.77 mg/g respectively with the Langmuir isotherm describing the adsorption phenomena better than the Freundlich and Temkin isotherm. The adsorption was found to be exothermic from the thermodynamic studies and the kinetics showed that the adsorption phenomena were second order.

고시리카제올라이트, 거대망상수지 및 입상활성탄에 의한 아민류의 액상흡착평형 (Liquid Phase Adsorption Equilibria of Amines onto High Silica Zeolite, Macroreticular Resin and Granular Activated Carbon)

  • 이성식;김형준;유명호
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.661-666
    • /
    • 1998
  • 고시리카제올라이트 (HSZ), 거대망상수지입자(MR) 및 입상활성탄(GAC)에 의한 수용액중의 12가지 아민유도체의 평형흡착 실험 데이터와 Freundlich, Langmuir, Toth, Redlich-Peterson 식의 인자들을 각각 구하였다. 아민류의 흡착특징에 있어서는 고시리카제올라이트는 unfavourable, 입상활성탄은 favourable로 비선형이나, 거대망상수지흡착제는 선형관계의 특성을 나타내며, 변수가 2개인 Freundlich 식과 3개인 Redlich-Peterson 흡착등온식에 잘 일치하였다. HSZ, MR, GAC에 의한 아민류의 흡착능은 방향족>1급아민>2급아민 순이었으며, Freundlich상수 k와 n의 곱인 (k n)값은 HSZ와 MR 및 GAC에서 아민류의 끓는 점 $T_B$, 몰부피 $V_m$, 그리고 해리상수 $pK_a$에 비례하여 증가하였다.

  • PDF

Biosorptive capacity of Cd(II) and Pb(II) by lyophilized cells of Pleurotus eryngii

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • 한국토양비료학회지
    • /
    • 제44권4호
    • /
    • pp.615-624
    • /
    • 2011
  • last few decades. In this study, the lyophilized cells of Pleurotus eryngii (mushroom) were used as an inexpensive biosorbent for Cd(II) and Pb(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Pb(II) biosorption such as pH (2.0-7.0), initial metal concentration ($0.0-300mg\;L^{-1}$), temperature, fungal biomass and contact time (0-120 min) were studied. Optimum pH for removal of Cd(II) and Pb(II) was 6.0, and the contact time was 45 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by Infrared (IR) spectroscopic technique. IR analysis of mushroom biomass revealed the presence of amino, carboxyl, hydroxyl and methyl groups, which are responsible for biosorption of Cd(II) and Pb(II). The maximum adsorption capacities of P. eryngii for Pb(II) and Cd(II) calculated using Langmuir adsorption isotherm were 82.0 and $16.13mg\;g^{-1}$, respectively. The adsorption isotherms for two biosorbed heavy metals were fitted well with Freundlich isotherm as well as Langmuir model with correlation coefficient ($r^2$>0.99). Thus, this study indicated that the P. eryngii is an efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions.