• Title/Summary/Keyword: Lane by lane theory

Search Result 24, Processing Time 0.025 seconds

Design Guideline Development for Managed Lane Access Spacing Using Gap Acceptance Theory (간격수락 이론을 이용한 다인승전용차로 진.출입을 위한 도로 디자인 지침정립)

  • Yang, Cheol-Su;Mattingly, Stephen P.;Kim, Hyeon-Ung;Gwon, Yong-Jang
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.177-186
    • /
    • 2010
  • The principal objective of this paper is to develop road design guidelines, especially for managed lane access spacing between the expressway on-ramp (or off-ramp) and managed lane access point. Managed lanes are typically located in the expressway median and are accessed by weaving across the mainlines. The high level of lane-changing activity present in weaving areas affects capacity significantly. One promising tool for the analysis of lane-changing activity is "gap acceptance theory." This paper estimates the capacity of weaving areas based on the estimated degree of traffic turbulence using gap acceptance theory. The degree of traffic turbulence is represented by a function of the probability that lane-changing vehicles can complete their maneuvers successfully in a given weaving distance. In developing road design guidelines based on the developed gap acceptance model, the minimum managed lane access spacing is determined where the capacity with respect to the managed lane access spacing becomes stable.

A Study on a Lane Detection Using Eccentricity (Eccentricity를 이용한 차선 검출에 관한 연구)

  • Jeong, Tae-Il;Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2755-2761
    • /
    • 2012
  • In this paper, a lane detection algorithm using Eccentricity calculation is proposed. Lane detection is used for lane departure warning which can support safe driving to prevent accidents. In other to enhance the detection rate, we define the Eccentricity calculation which is introduced in graph theory, and evaluate the Eccentricity. The Eccentricity for any straight line is equal to 1, hence computing the Eccentricity allows the implementation of a first order equation. As a results of simulation, we confirmed that the proposed algorithm was enhanced by time and space complexity, and superior to the performance of the conventional lane detections.

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

Analysis of Lane-Changing Distribution within Merging and Weaving Sections of Freeways (고속도로 합류 및 엇갈림구간에서의 차로변경 분포 분석에 관한 연구)

  • Kim, Yeong-Chun;Kim, Sang-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.115-126
    • /
    • 2009
  • The lane-change behavior usually consists of discretionary lane-change and mandatory lane-change types. For the first type, drivers change lanes selectively to maintain their own driving condition and the second type is the case that the drivers must change the current lane, which can occur in recurrent congestion sections like merging and weaving sections. The mandatory lane-change behavior have a great effect on the operation condition of freeway. In this paper, we first generate data such as traffic volumes, speeds, densities, and the number of lane-change within the merging and weaving sections using the data of individual vehicle collected from time-lapse aerial photography. And then, the data is divided into the stable and congested flow by analyzing the speed variation pattern of individual vehicles. In addition, the number of lane-changing from ramp to mainline within every 30-meter interval is investigated before and after traffic congestion at study sites and the distribution of lane-changing at each 30-meter point is analyzed to identify the variation of lane-changing ratio depending on the stable and congested flows. To recognize the effect of mainline flow influenced by ramp flow, this study also analyzes the characteristics of the lane-changing distributions within the lanes of mainline. The purpose of this paper is to present the basic theory to be used in developing a lane-changing model at the merging and weaving sections on freeways.

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.

Determination of Deceleration Lane Length in Interchange with Shock-Wave Theory (충격파를 고려한 입체교차로의 감속차로 길이 산정방안)

  • Kim, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • Current highway design standards is based on the safety under the free flow condition. The length of deceleration lane is also determined in terms of the deceleration distance which is necessary for the driers to adjust the vehicle speed from the speed limit on the main road to that on the exit ramp of the interchange. However, the queues are frequently developed on the deceleration, and the following vehicles to exit must decelerate on the main road. It may cause delay on the main road and traffic accidents. This study is to suggest a methodology to minimize such problems with the shock-wave theory. The queue length of exiting vehicles can be estimated by the design speeds, traffic volumes of main road and the exiting ramp, and the countermeasures to the operational problems. According to the results, the queue length can be shortened to 80% by upgrading the design speed of exit ramp as the amount of 10km/h. Fifty percent of queue length can be shortened by adding an additional lane on the ramp to two lanes.

  • PDF

Detection of a Land and Obstacles in Real Time Using Optimal Moving Windows (최적의 Moving Window를 사용한 실시간 차선 및 장애물 감지)

  • Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.57-69
    • /
    • 2000
  • A moving window technique for detecting a lane and obstacles using the Images captured by a CCD camera attached in an automobile, is proposed in this paper To process the dynamic images in real time, there could be many constraints on the hardware To overcome these hardware constraints and to detect the lane and obstacles in real time, the optimal size of window IS determined based upon road conditions and automobile states. By utilizing the sub-Images inside the windows, detection of the lane and obstacles become possible m real time. For each Image frame, the moving windows are re-determined following the predicted directions based on Kalman filtering theory to Improve detection accuracy, as well as efficiency The feasibility of proposed algorithm IS demonstrated through the simulated experiments of highway driving.

  • PDF

Diagnosis on Degree of Saturation Model of COSMOS Affected by Geometric and Detection Conditions and Detector Placements (교통조건, 기하구조 조건 및 검지기 설치위치에 따른 실시간신호제어시스템 포화도 산출방식 진단)

  • KIM, Jun-Young;KIM, Jin Tae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.81-94
    • /
    • 2016
  • The Korean real-time traffic responsive control systems, Cycle Offset Split Model of Seoul (COSMOS), employs a single theoretical model to estimate the degree-of-saturation (DS) on approaches. However, the deployment of the system has been accomplished without practical consideration of its field performance. This paper delivers a diagnosis study performed to find the relationships yet known on the DS values against the operational conditions unproved in theory but ordinarily observed in field practice. Based on the analysis of the historical log data (476,505 cycles) obtained from the COSMOS server, it was found; (1) full coverage of lane detections should perform better than the sample coverage of detection in ordinary conditions, (2) the sample coverage of detection perform better than the other case with an exclusive bus lane, (3) detection in which a shared lane is involved provide poor estimation of DS, (4) poor DS estimation when a detection lane is adjacent to a shared lane, and (5) the DS values obtained during a day can hardly be stable all time. The findings suggest traffic engineers a progressive direction to move forward for the next real-time traffic control systems.

Model Development Determining Probabilistic Ramp Merge Capacity Including Forced Merge Type (강제합류 형태를 포함한 확률적 연결로 합류용량 산정 모형 개발)

  • KIM, Sang Gu
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.107-120
    • /
    • 2003
  • Over the decades, a lot of studies have dealt with the traffic characteristics and phenomena at a merging area. However, relatively few analytical techniques have been developed to evaluate the traffic flow at the area and, especially, the ramp merging capacity has rarely been. This study focused on the merging behaviors that were characterized by the relationship between the shoulder lane flow and the on-ramp flow, and modeled these behaviors to determine ramp merge capacity by using gap acceptance theory. In the process of building the model, both an ideal mergence and a forced mergence were considered when ramp-merging vehicles entered the gap provided by the flow of the shoulder lane. In addition, the model for the critical gap was proposed because the critical gap was the most influential factor to determine merging capacity in the developed models. The developed models showed that the merging capacity value was on the increase as the critical gap decreased and the shoulder lane volume increased. This study has a meaning of modeling the merging behaviors including the forced merging type to determine ramp merging capacity more precisely. The findings of this study would help analyze traffic phenomena and understand traffic behaviors at a merging area, and might be applicable to decide the primary parameters of on-ramp control by considering the effects of ramp merging flow.

Modelling and Evaluation of Traffic Flow with Variable Speed Limit on Highway (연속류 가변속도제어 모형개발 및 효과분석)

  • Cho, Hye-Rim;Kim, Young-Chan;Ha, Dong-Ik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.16-26
    • /
    • 2011
  • Variable speed limit(VSL) is one of the highway ITS techniques designed to prevent accidents and traffic slow down by reducing congestion or speed variation between vehicles and lanes prior to arrive at the accident location by limiting speed. In Korea, while people have recognized the need for variable speed limit beginning with Seoul's urban expressway and installed facilities in order to provide guide for speed limit per lane and lane use, there has not been enough development of algorithm for internal administration as well as research on the basic principles behind administering variable speed limit. This study is for modeling and evaluating the VSL strategies based on the traffic flow theory. Supply-Demand method of the Cell Transmission Model is applied to demonstrate the traffic features and shockwaves to upstream of the bottleneck with/without VSL. We verified the explanation of Cell Transmission Model for the numerical example. and as the result, it is found that VSL strategies can reduce the total travel time in the congested section and variation of the speed. It means VSL is useful to improve the traffic condition and the safety on highway