• Title/Summary/Keyword: Landuse pattern

Search Result 32, Processing Time 0.019 seconds

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Runoff Characteristics of Non-Point Source Pollutants in Storm Event -Case Study on the Upstream and Downstream of Kokseong River, Korea- (강우시 비점오염물질의 유출특성에 관한 연구 -곡성천 상.하류를 대상으로-)

  • Yang Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.418-434
    • /
    • 2006
  • The study was investigated to runoff characteristics of non-point pollutants according to rainfall in Kokseong river watershed. The result of which is as follows : First of all, major reason which affect the formation of water quality of Kokseong River is judged to be caused by non-point pollution source which flows out from farmland and residential area. Flow of rainfall effluent in the downstream in which direct flow components of urban district and combined sewer overflows of farmland was intervened faster than that in the upstream reacted more promptly. Generation of pollutants by non-point source shows increasing trend in general in accordance with the increase in the intensity of rainfall but it was affected by SS, BOD, COD and T-P in the upstream part whereas BOD, COD and T-N were significantly affected by beginning period of rainfall in the downstream. EMC in the downstream increased approximately 3-315 times as compared to upstream, particularly the discharge of SS5 and T-P were extremely increased. While surface flow out of rainfall effluent in the upstream was only 4.7%, the surface flow in the downstream took up as much as 29%, which was major reason for the increase of EMC. From the above contents, we can see that the change in water quality according to the increase and decrease of effluent at the time of rainfall showed very complex pattern depending on the type of land use, and it is judged that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.