• 제목/요약/키워드: Landslide susceptibility mapping

검색결과 47건 처리시간 0.023초

LANDSLIDE SUSCEPTIBILITY MAPPING AND VERIFICATION USING THE GIS AND BAYESIAN PROBABILITY MODEL IN BOEUN, KOREA

  • Choi, Jae-Won;Lee, Sa-Ro;Yu, Young-Tae
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.100-100
    • /
    • 2003
  • The purpose of this study is to reveals spatial relationships between landslides and geospatial data set, map the landslide susceptibility using the relationships and verify the landslide susceptibility using the landslide occurrence data in Bosun area in 1998. Landslide locations were detected from aerial photography and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database using GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. Is extract the relationship between landslides and geospatial database, Bayesian probability methods, likelihood ratio and weight of evidence, were applied and the ratio and contrast value that is W$\^$+/- W$\^$-/ were calculated. The landslide susceptibility index was calculated by summation of the likelihood ratio and contrast value and the landslide susceptibility maps were generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of landslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF

APPLICATION OF LOGISTIC REGRESS10N A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Saro, Lee;Choi, Jae-Won;Yu, Young-Tae
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.64-64
    • /
    • 2003
  • The aim of this study is to apply and verify of logistic regression at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database.13${\times}$1ure, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the logistic regression coefficient were overlaid for landslide susceptibility mapping. Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

APPLICATION OF LIKELIHOOD RATIO A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Choi, Jae-Won;Lee, Saro;Yu, Young-Tae
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.63-63
    • /
    • 2003
  • The aim of this study is to apply and verify of Bayesian probability model, the likelihood ratio and statistical model, at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database. Texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the likelihood ratio coefficient were overlaid for landslide susceptibility mapping, Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

CROSS- VALIDATION OF LANDSLIDE SUSCEPTIBILITY MAPPING IN KOREA

  • LEE SARO
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.291-293
    • /
    • 2004
  • The aim of this study was to cross-validate a spatial probabilistic model of landslide likelihood ratios at Boun, Janghung and Yongin, in Korea, using a Geographic Information System (GIS). Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and field surveys. Maps of the topography, soil type, forest cover, lineaments and land cover were constructed from the spatial data sets. The 14 factors that influence landslide occurrence were extracted from the database and the likelihood ratio of each factor was computed. 'Landslide susceptibility maps were drawn for these three areas using likelihood ratios derived not only from the data for that area but also using the likelihood ratios calculated from each of the other two areas (nine maps in all) as a cross-check of the validity of the method For validation and cross-validation, the results of the analyses were compared, in each study area, with actual landslide locations. The validation and cross-validation of the results showed satisfactory agreement between the susceptibility map and the existing landslide locations.

  • PDF

Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구 (Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models)

  • 이사로;오현주
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.299-316
    • /
    • 2019
  • 본 연구는 지리정보시스템(GIS) 환경에서 확률 모델인 Weight Of Evidence (WOE)와 Evidential Belief Function (EBF), 기계학습 모델인 Artificial Neural Networks (ANN) 모델을 이용하여 평창지역의 산사태 취약성도를 공간적으로 분석하고 예측하였다. 본 연구지역은 2006년 태풍 에위니아에 의한 집중호우로 산사태가 많이 발생하여 많은 재산 및 인명피해가 발생하였다. 산사태 취약성도를 작성하기 위해 항공사진을 이용하여 3,955개의 방대한 산사태 발생 위치를 탐지하였고, 환경공간정보인 지형, 지질, 토양, 산림 및 토지이용 등의 공간 데이터를 수집하여 공간데이터베이스에 구축하였다. 이러한 공간데이터베이스를 이용하여 산사태에 영향을 줄 수 있는 인자 17개를 추출하여 입력 인자와 EBF, WOE, ANN 모델을 이용하여 산사태 취약성도를 작성하고 검증하였다. 작성 및 검증을 위해 산사태 자료는 각각 50%씩 나누어서 훈련 및 검증을 실시하였고, 검증결과 WOE 모델의 경우는 74.73%, EBF 모델의 경우는 75.03%, ANN 모델의 경우는 70.87%의 예측 정확도를 나타내었다. 본 연구에 사용된 모델 중 EBF 모델이 가장 높은 정확도를 나타냈으며, 모든 모델에서 70% 이상의 예측 정확도를 보여 본 연구에서 사용된 기법이 산사태 취약성도 작성에 유효함을 나타내었다. 본 연구에서 제안된 WOE, EBF, ANN 모델과 산사태 취약성도는 이전에 산사태가 발생하지 않은 지역의 산사태를 예측하는 데 사용될 수 있다. 이러한 취약성도는 산사태 위험 감소를 촉진하고, 토지 이용 정책 및 개발을 위한 기초자료 역할을 할 수 있으며, 궁극적으로 산사태 재해 예방을 위한 시간과 비용을 절약할 수 있다. 향후 보다 많은 지역에서 산사태 취약성도 작성 방법을 적용하여 산사태 위험 예측을 위한 일반화된 모델을 이끌어 내야 한다.

Analysis of the relationships between topographic factors and landslide occurrence and their application to landslide susceptibility mapping: a case study of Mingchukur, Uzbekistan

  • Kadirhodjaev, Azam;Kadavi, Prima Riza;Lee, Chang-Wook;Lee, Saro
    • Geosciences Journal
    • /
    • 제22권6호
    • /
    • pp.1053-1067
    • /
    • 2018
  • This paper uses a probability-based approach to study the spatial relationships between landslides and their causative factors in the Mingchukur area, Bostanlik districts of Tashkent, Uzbekistan. The approach is based on digital databases and incorporates methods including probability analysis, spatial pattern analysis, and interactive mapping. First, an object-oriented conceptual model for describing landslide events is proposed, and a combined database of landslides and environmental factors is constructed by integrating various databases within a unifying conceptual framework. The frequency ratio probability model and landslide occurrence data are linked for interactive, spatial evaluation of the relationships between landslides and their causative factors. In total, 15 factors were analyzed, divided into topography, hydrology, and geology categories. All analyzed factors were also divided into numerical and categorical types. Numerical factors are continuous and were evaluated according to their $R^2$ values. A landslide susceptibility map was constructed based on conditioning factors and landslide occurrence data using the frequency ratio model. Finally, the map was validated and the accuracy showed the satisfactory value of 83.3%.

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.

공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가 (Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment)

  • 알-마문;박현수;장동호
    • 한국지형학회지
    • /
    • 제26권3호
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

환경정보시스템을 이용한 산사태 발생위험 예측도 작성: 경상북도를 중심으로 (Development of Landslide Hazard Map Using Environmental Information System: Case on the Gyeongsangbuk-do Province)

  • 배민기;정규원;박상준
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1189-1197
    • /
    • 2009
  • The purpose of this research was develop tailored landslide hazard assessment table (LHAT) in Gyeongsangbuk-do Province and propose building strategies on environmental information system to estimate landslide hazard area according to LHAT. To accomplish this purpose, this research investigated factors occurring landslide at 172 landslide occurred sites in 23 city and county of Gyeongsangbuk-do Province and analyzed what factors effected landslide occurrence quantity using the multiple statistics of quantification method(I). The results of analysis, factors affecting landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. And results of the development of LHAT for predict mapping of landslide-susceptible area in Gyeongsangbuk-do Province, total score range was divided that 107 under is stable area(IV class), 107~176 is area with little susceptibility to landslide(III class), 177~246 is area with moderate susceptibility to landslide(II class), above 247 area with severe susceptibility to landslide(I class). According to LHAT, this research built landslide attribute database and made 7 digital theme maps at mountainous area located in Goryeong Gun, Seongju-Gun, and Kimcheon-City. The results of prediction on degree of landslide hazard using environmental information system, area with little susceptibility to landslide(III class) occupied 65.56% and severe susceptibility to landslide(I class) occupied 0.51%.