• Title/Summary/Keyword: Landslide Susceptibility

Search Result 126, Processing Time 0.022 seconds

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

APPLICATION OF LOGISTIC REGRESS10N A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Saro, Lee;Choi, Jae-Won;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.64-64
    • /
    • 2003
  • The aim of this study is to apply and verify of logistic regression at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database.13${\times}$1ure, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the logistic regression coefficient were overlaid for landslide susceptibility mapping. Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

APPLICATION OF LIKELIHOOD RATIO A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Choi, Jae-Won;Lee, Saro;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.63-63
    • /
    • 2003
  • The aim of this study is to apply and verify of Bayesian probability model, the likelihood ratio and statistical model, at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database. Texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the likelihood ratio coefficient were overlaid for landslide susceptibility mapping, Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

A Comparative Study of Fuzzy Based Frequency Ratio and Cosine Amplitude Method for Landslide Susceptibility in Jinbu Area (빈도비와 Cosine Amplitude Method를 이용한 진부지역의 퍼지기반 산사태 취약성 예측기법 비교 연구)

  • Kim, Kang Min;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.195-214
    • /
    • 2017
  • Statistical landslide susceptibility analysis, which is widely used among various landslide susceptibility analysis approaches, predicts the unstable area by analyzing statistical relationship between landslide occurrence locations and landslide controlling factors. However, uncertainties are involved in the procedures of the susceptibility analysis and therefore, fuzzy approach has been used to deal properly with uncertainties. The fuzzy approach used fuzzy set theory and fuzzy membership function to quantify uncertainties involved in landslide controlling factors. Various fuzzy approaches were suggested in the procedure of the membership value determination and fuzzy operation in the previous researches. However, few studies were carried out to compare the analysis results obtained from various approaches for membership function determination and fuzzy operation. Therefore, in this study, the authors selected Jinbu area, which a large number of landslides were occurred at in 2006, to apply two most commonly used methods, the frequency ratio and the cosine amplitude method to derive membership values for each controlling factor. In addition, the integration of different thematic layers to produce landslide susceptibility map was performed by several fuzzy operators such as AND, OR, algebraic product, algebraic sum and Gamma operator. The results of the landslide susceptibility analysis using two different methods for the determination of fuzzy membership values and various fuzzy operators were compared on the basis of ROC graph to check the feasibility of the fuzzy based landslide susceptibility analysis.

Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model (베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가)

  • Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.

Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model (로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가)

  • Rahnuma, Bintae Rashid Urmi;Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

Study on Landslide using GIS and Remote Sensing at the Kangneung Area(II)-Landslide Susceptibility Mapping and Cross-Validation using the Probability Technique (GIS 및 원격탐사를 이용한 2002년 강릉지역 태풍 루사로 인한 산사태 연구(II)-확률기법을 이용한 강릉지역 산사태 취약성도 작성 및 교차 검증)

  • Lee Saro;Lee Moung-Jin;Won Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.521-532
    • /
    • 2004
  • The aim of this study is to evaluate the susceptibility of landslides at Kangneung area, Korea, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified from interpretation of satellite image and field surveys. The topographic, soil, forest, geologic, lineament and land cover data were collected, processed and constructed into a spatial database using GIS and remote sensing data. Using frequency ratio model which is one of the probability model, the relationships between landslides and related factors such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood, lithology, distance from lineament and land cover were calculated as frequency ratios. Then, the frequency ratio were summed to calculate a landslide susceptibility indexes and the landslide susceptibility maps were generated using the indexes. The results of the analysis were verified and cross-validated using actual landslide location data. The verification results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review

  • Lee, Saro
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.179-193
    • /
    • 2019
  • Landslides are one of the most damaging geological hazards worldwide, threating both humans and property. Hence, there have been many efforts to prevent landslides and mitigate the damage that they cause. Among such efforts, there have been many studies on mapping landslide susceptibility. Geographic information system (GIS)-based techniques have been developed and applied widely, and are now the main tools used to map landslide susceptibility. We reviewed the status of landslide susceptibility mapping using GIS by number of papers, year, study area, number of landslides, cause, and models applied, based on 776 articles over the last 20 years (1999-2018). The number of studies published annually increased rapidly over time. The total study area spanned 65 countries, and 47.7% of study areas were in China, India, South Korea, and Iran, where more than 500 landslides, 27.3% of all landslides, have occurred. Slope (97.6% of total articles) and geology (82.7% of total articles) were most often implicated as causes, and logistic regression (26.9% of total articles) and frequency ratio (24.7% of total article) models were the most widely used models. We analyzed trends in the causes of and models used to simulate landslides. The main causes were similar each year, but machine learning models have increased in popularity over time. In the future, more study areas should be investigated to improve the generalizability and accuracy of the results. Furthermore, more causes, especially those related to topography and soil, should be considered and more machine learning models should be applied. Finally, landslide hazard and risk maps should be studied in addition to landslide susceptibility maps.

Landslide Susceptibility Mapping and Verification Using the GIS and Bayesian Probability Model in Boun (지리정보시스템(GIS) 및 베이지안 확률 기법을 이용한 보은지역의 산사태 취약성도 작성 및 검증)

  • Choi, Jae-Won;Lee, Sa-Ro;Min, Kyung-Duk;Woo, Ik
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.207-223
    • /
    • 2004
  • The purpose of this study is to reveal spatial relationships between landslide and geospatial data set, to map the landslide susceptibility using the relationship and to verify the landslide susceptibility using the landslide occurrence data in Boun area in 1998. Landslide locations were detected from aerial photography and field survey, and then topography, soil, forest, and land cover data set were constructed as a spatial database using GIS. Various spatial parameters were used as the landslide occurrence factors. They are slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil. type, age, diameter and density of wood, lithology, distance from lineament and land cover. To calculate the relationship between landslides and geospatial database, Bayesian probability methods, weight of evidence. were applied and the contrast value that is >$W^{+}$->$W^{-}$ were calculated. The landslide susceptibility index was calculated by summation of the contrast value and the landslide susceptibility maps were generated using the index. The landslide susceptibility map can be used to reduce associated hazards, and to plan land cover and construction.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.