• Title/Summary/Keyword: Landsat-8 위성

Search Result 163, Processing Time 0.023 seconds

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Forest Damage Detection Using Daily Normal Vegetation Index Based on Time Series LANDSAT Images (시계열 위성영상 기반 평년 식생지수 추정을 통한 산림생태계 피해 탐지 기법)

  • Kim, Eun-sook;Lee, Bora;Lim, Jong-hwan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1133-1148
    • /
    • 2019
  • Tree growth and vitality in forest shows seasonal changes. So, in order to detect forest damage accurately, we have to use satellite images before and after damages taken at the same season. However, temporal resolution of high or medium resolution images is very low,so it is not easy to acquire satellite images of the same seasons. Therefore, in this study, we estimated spectral information of the same DOY using time-series Landsat images and used the estimates as reference values to assess forest damages. The study site is Hwasun, Jeollanam-do, where forest damage occurred due to hail and drought in 2017. Time-series vegetation index (NDVI, EVI, NDMI) maps were produced using all Landsat 8 images taken in the past 3 years. Daily normal vegetation index maps were produced through cloud removal and data interpolation processes. We analyzed the difference of daily normal vegetation index value before damage event and vegetation index value after event at the same DOY, and applied the criteria of forest damage. Finally, forest damage map based on daily normal vegetation index was produced. Forest damage map based on Landsat images could detect better subtle changes of vegetation vitality than the existing map based on UAV images. In the extreme damage areas, forest damage map based on NDMI using the SWIR band showed similar results to the existing forest damage map. The daily normal vegetation index map can used to detect forest damage more rapidly and accurately.

Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data (Landsat과 ASTER 위성영상 자료를 이용한 광물자원탐사로의 적용 가능성을 위한 예비연구)

  • Lee, Hong-Jin;Park, Maeng-Eon;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.467-475
    • /
    • 2010
  • The Landsat and ASTER data have been used in mineralogical and lithological studies, and they have also proved to be useful tool in the initial steps for mineral exploration throughout Nevada mining district, US. Huge pyrophyllite quarry mines, including Jungang, Samsung, Kyeongju, and Naenam located in the southeastern part of Gyeongsang Basin. The geology of study area consists mainly of Cretaceous volcanic rocks, which belong into Cretaceous Hayang and Jindong Group. They were intruded by Bulgugsa granites, so called Sannae-Eonyang granites. To extraction of Ratio model for pyrophyllite deposits, tuffaceous rock and pyrophyllite ores from the Jungang mine used in reflectance spectral analysis and these results were re-sampled to Landsat and ASTER bandpass. As a result of these processes, the pyrophyllite ores spectral features show strong reflectance at band 5, whereas strong absorption at band 7 in Landsat data. In the ASTER data, the pyrophyllite ores spectral features show strong absorption at band 5 and 8, whereas strong reflectance at band 4 and 7. Based on these spectral features, as a result of application of $Py_{Landsat}$ model to hydrothermal alteration zone and other exposed sites, the DN values of two different areas are 1.94 and 1.19 to 1.49, respectively. The differences values between pyrophyllite deposits and concrete-barren area are 0.472 and 0.399 for $Py_{ASTER}$ model, 0.452 and 0.371 for OHIb model, 0.365 and 0.311 for PAK model, respectively. Thus, $Py_{ASTER}$ and $Py_{Landsat}$ model proposed from this study proved to be more useful tool for the extraction of pyrophyllite deposits relative to previous models.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Analysis of Forest Change Characteristics in North Korea using Multi-temporal Satellite Images (다시기 위성영상을 이용한 북한 전체의 산림 변화 특성 분석)

  • Lee, Hyoung-Kyu;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.633-638
    • /
    • 2018
  • We are constantly hearing about the seriousness of food shortages in North Korea through various media reports. Recently, the severity of the problem has increased, and international organizations and relief organizations have become increasingly concerned. Due to the shortage of food and firewood, residents illegally cut trees in the mountains and, as a result, North Korea has become the third fastest-growing area of forest degradation in Asia. However, since North Korea cannot directly measure the extent of forest degradation, remote sensing techniques using satellite imagery have to be applied. The purpose of this study was to analyze the characteristics of forest change in North Korea, in order to understand the severity of the forest degradation problem. For this purpose, Landsat 5 TM and Landsat 8 OLI TIRS satellite images were acquired and classified. As a result, it was found that the forests have turned into wilderness in the Nampo City and Pyongyang municipalities, while the wasteland has changed into forests in the north of Yanggangdo. In addition, the total forested area of the whole region decreased by $4,166.22km^2$, the residential area decreased by $2,017.03km^2$, and the amount of agricultural land increased by $6,625.74km^2$, which is similar to the amount of forested area lost, although the difference in the overall area of the forests between 2017 and 2006 was small.

High Resolution Ocean Color Products Estimation in Fjord of Svalbard, Arctic Sea using Landsat-8 OLI (Landsat-8 OLI를 이용한 북극해 스발바드 피요르드의 고해상도 Ocean Color Product 산출)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Hyun, Chang-Uk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.809-816
    • /
    • 2014
  • Ocean Color products have been used to understand marine ecosystem. In high latitude region, ice melting optically influences the ocean color products. In this study, we assessed optical properties in fjord around Svalbard Arctic sea, and estimated distribution of chlorophyll-a and suspended sediment by using high resolution satellite data, Landsat-8 Operational Land Imager (OLI). To estimate chlorophyll-a and suspended sediment concentrations, various regression models were tested with different band ratio. The regression models were not shown high correlation because of temporal difference between satellite data and in-situ data. However, model-derived distribution of ocean color products from OLI showed a possibility that fjord and coastal areas around Arctic Sea can be monitored with high resolution satellite data. To understand climate change pattern around Arctic Sea, we need to understand ice meting influences on marine ecosystem change. Results of this study will be used to high resolution monitoring of ice melting and its influences on the marine ecosystem change at high latitude. KOPRI (Korea Polar Research Institute) has been operated the Dasan station on Svalbard since 2002, and study was conducted using Arctic station.

Application of Remote Sensing Technology considering Water Quality Parameters of Nakdong River basin (하천수질인자를 고려한 원격탐사기술의 적용 ; 낙동강유역을 대상으로)

  • Lim, Ji Sang;Lee, Eul Rae;Kang, Sin Uk;Choi, Hyun Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.286-286
    • /
    • 2015
  • 하천과 해양에서 발생한 수질오염은 특성상 유속의 흐름에 따라 광범위하며 급속도로 퍼져나가기 때문에 이를 효율적으로 유지, 관리하기 위해서는 오염인자들에 대한 모니터링이 수행되어야 한다. 원격탐사 기술을 이용한 하천의 수질측정은 대규모지역으로 분포해있는 수질농도의 변화양상을 시 공간적으로 모니터링 하는 것이 가능하게 할 뿐 아니라, 사람이 접근하기 어려운 지역에는 직접취수를 하지 않음으로써 기존의 수질측정방법들에 비해 편의성을 높여 시간적, 경제적 측면에서 효율적이다. 이에 본 연구에서는 최근 수질오염이 심화되고 있는 낙동강유역을 대상으로 인공위성 이미지영상을 이용하여 수질인자들의 농도측정을 수행하였다. 연구를 위해 사용된 인공위성은 NASA와 USGS가 공동으로 운용중인 Landsat 8 인공위성이다. Landsat 8의 11개 band 중 band2(Blue), band3(Green), band4(Red), band5(Near Infrared)를 사용하여 실제로 측정된 지점자료와 인공위성자료간의 상관관계를 규명하였다. 사용된 인공위성자료는 지점자료 날짜를 포함하는 총 4개의 연구날짜(2013/10/27, 2013/11/12, 2014/04/14, 2014/05/16)에 해당하는 위성이미지영상이다. Pearson상관계수를 통한 밴드와 수질인자간의 상관 결과, 본 연구지역에서는 $0.85-0.88{\mu}m$(band5)의 파장영역에서 클로로필-a와 부유물질이 가장 민감하게 반응함을 알 수 있었다. 두 수질인자들은 band2, band3, band4에서도 비교적 높은 상관성을 보였으며, 이를 근거로 band combination, band ratio를 통해 클로로필-a와 부유물질의 회귀모델식을 유도하였다. 각각의 회귀모델식은 실제 측정된 데이터들과 비교 검증을 통해 4개의 연구기간 중 2013년 10월 27일, 2014년 5월 16일에 대해서 클로로필-a와 부유물질의 공간적인 분포양상을 시각적으로 도시화하였다.

  • PDF

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

A Study of DEM Generation in the Ganghwado Southern Intertidal Flat Using Waterline Method and InSAR (수륙경계선 방법과 위상간섭기법을 이용한 강화도 남단 갯벌의 DEM 생성 연구)

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung;Hong, Sang-Hoon;Won, Joong-Sun;Yoo, Hong-Rhyong
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.29-38
    • /
    • 2006
  • Digital Elevation Model (DEM) of intertidal flat can be widely used not only for scientific fields, coastal management, fisheries, ocean safety, military, but also for understanding natural and artificial topographic changes of the tidal flat. In this study, we generated DEM of the Ganghwado southern intertidal flat, the largest tidal flat in the west coast of the Korean Peninsula, using waterline method and interferometric synthetic aperture radar (InSAR). Constructed DEM which applied waterline method to the Landsat-5 TM and Landsat-7 ETM+ images closely expresses overall topographic relief of tidal flat. We found that the accuracy was determined by the number of waterlines which reflect various tidal conditions. The application of InSAR to the ERS-1/2 and ENVISAT images showed that only ERS-1/2 tandem pairs successfully generated DEM in the part of northern Yeongjongdo, but construction of DEM in the other areas was difficult due to the low coherence caused by a lot of surface remnant waters. In the near future, Kompsat-2 will provide satellite images having multi-spectral and high spatial resolution within a relatively short period at different sea levels. Application of waterline method to these images will help us construct a high precision tidal flat DEM. Also, we should develop DEM generation method using single-pass microwave satellite images.

  • PDF

Analysis about technology requirements for Development of Disaster Detecting Satellite Sensor (재난전조감지를 위한 위성센서 기술요구조건 분석)

  • Woo, Han-Byol;Joo, Young-Do;Choi, Myung-Jin;Jang, Su-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1205-1216
    • /
    • 2015
  • Since concentration of greenhouse gas increases continuously from human's fossil fuel use, urbanization, and cultivation, it is trend that climate change is appearing. In Addition, in 20th century, occurrence of disaster is accidental and huge, and damage level also increases gradually. Therefore, in order to preserve the territory and to protect people's life and property against new type disasters, disaster detection satellite (payloads) development is required urgently. In this paper, we conduct a research and development for the prompt preemptive action when occurred a disaster, in particularly, about the disaster observation optimized at Korea's geographical features for the irregular future disasters. For the payload design which is specialized detect disasters, we create a tech tree of satellite imagery applications based 10 disaster types, and analyze the satellite sensor technologies referred to Landsat-8, Worldview-3 and ALOS-2.