• Title/Summary/Keyword: Landsat satellite imagery

Search Result 164, Processing Time 0.03 seconds

An Quantitative Analysis of Severity Classification and Burn Severity At the targe-fire Areas Using NBR Index of Landsat Imagery (Landsat NBR지수를 이용한 대형산불 피해지 구분 및 피해강도의 정량적 분석)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.231-237
    • /
    • 2007
  • To monitor process of vegetation rehabilitation at the damaged area after large-fire is required a lot of manpowers and budgets. However the analysis of vegetation recovery using satellite imagery can be obtaining rapid and objective result remotely in the large damaged area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. To classify fire damaged area and analyze burn severity of Samcheok fire area occurred in 2000, Cheongyang fire 2002, and Yangyang fire 2005 was utilized Landsat TM and ETM+ imagery. Therefore the objective of the present paper is to quantitatively classify fire damaged area and analyze burn severity using normalized burn index(NBR) of pre- and post-fire's Landsat satellite imagery.

  • PDF

Detection of Urban Expansion and Surface Temperature Change using Landsat Satellite Imagery (Landsat 위성영상을 이용한 도시확장 및 지표온도 변화 탐지)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.59-65
    • /
    • 2005
  • It is very important to detect land cover/land use change from the past and to use it for future urban plan. This paper investigated the application of Landsat satellite imagery for detecting urban growth and assessing its impact on surface temperature in the region. Land cover/land use change detection was carried out by using 30m resolution Landsat satellite images and hierarchial approach was introduced to detect more detail change on the changing area through high resolution aerial photos. Also, surface temperature according to land cover/land use was calculated from Landsat TM thermal infrared data and compared with real temperature to analyze the relationship between urban expansion and surface temperature. As a result, the urban expansion has raised surface radiant temperature in the urbanized area. The method using remote sensing data based on GIS was found to be effective in monitoring and analysing urban growth and in evaluating urbanization impact on surface temperature.

  • PDF

Automated Image Receiving and Processing System for Landsat 7

  • Park, Sung-Og;Kim, Moon-Gyu;Kim, Tae-Jung;Ji-Hyeon, Shin;Choi, Myung-jin;Park, Jeong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.573-577
    • /
    • 2002
  • The Landsat Program is the longest running enterprise for acquisition of imagery of the Earth from space. The first Landsat satellite was launched in 1972 and the most recent, Landsat 7, was launched on April 15, 1999. The Landsat satellites have acquired millions of images. The Landsat 7 receiving station is installed at more than 25 sites and will be installed in Korea. This paper will address the work being carried out for the development of image receiving and processing system for the Landsat 7 image data, which will be used at ground station of Landsat 7 in Korea.

  • PDF

Downscaling of MODIS Land Surface Temperature to LANDSAT Scale Using Multi-layer Perceptron

  • Choe, Yu-Jeong;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban Heat Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, spatial resolution, and cloud coverage. Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. This paper applied machine learning methods and performed downscaling which can obtain daily based land surface temperature imagery of 30 meters.

THE SPECTRAL SHAPE MATCHING METHOD FOR THE ATMOSPHERIC CORRECTION OF LANDSAT IMAGERY IN SAEMANGEUM COASTAL AREA

  • Min Jee-Eun;Ryu Joo-Hyung;Shanmugam P.;Ahn Yu-Hwan;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.671-674
    • /
    • 2005
  • Atmospheric correction over the ocean part is more important than that over the land because the signal from the ocean is very small about one tenth of that reflected from land. In this study, the Spectral Shape Matching Method (SSMM) developed by Ahn and Shanmugam (2004) is evaluated using Landsat imagery acquired over the highly turbid Saemangeum Coastal Area. The result of SSMM is compared with COST model developed by Chavez (1991 and 1997). In principle, SSMM is simple and easy to implement on any satellite imagery, relying on both field and image properties. To assess the potential use of these methods, several field campaigns were conducted in the Saemangeum coastal area corresponding with Landsat-7 satellite's overpass on 29 May 2005. In-situ data collected from the coastal waters of Saemangeum using optical instruments (ASD field spectroradiometer) consists of ChI, Ap, SS, aooM, F(d). In order to perform SSMM, we use the in-situ water-leaving radiance spectra from clear oceanic waters to estimate the the path radiance from total signal recorded at the top of the atmosphere (TOA), due to the reason that the shape of clear water-leaving radiance spectra is nearly stable than turbid water-leaving radiance spectra. The retrieved water-leaving radiance after subtraction of path signal from TOA signal in this way is compared with that estimated by COST model. The result shows that SSMM enabled retrieval of water-leaving radiance spectra that are consistent with in-situ data obtained from Saemangeum coastal waters. The COST model yielded significantly high errors in these areas.

  • PDF

Using ASTER TIR imagery to identify Heat Islands: A case study of New Jersey (ASTER 열적외선 이미지를 이용한 열섬 현상 탐지: 뉴저지를 사례로)

  • Park, Gwang yong;David W. Gwynn;David A. Robinson
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.56-56
    • /
    • 2004
  • The ability to detect urban heat islands in satellite imagery is a function of spatial, spectral, and temporal resolutions. Imagery from the satellite-mounted Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired since December 1999 allows us to view the Earth at a higher spectral resolution in the thermal infrared (TIR) portion of the electromagnetic spectrum than most other satellite systems (e.g., AVHRR, Landsat TM). (omitted)

  • PDF

Detection of Small Shallow-water Coral Reefs on Landsat Imagery

  • Trisirisatayawong, Itthi;Samanloh, Watcharee
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.479-481
    • /
    • 2003
  • Large number of coral reefs in Thailand waters make the use of satellite imagery probably the only practical method for their monitoring. This paper reports the result of detecting small shallow-water coral reef by using maximum likelihood classification technique. Combination of blue/green and near-infrared band ratio are used as spectral signatures derived from a Landsat 7 imagery covering western portion of the Gulf of Thailand. Result assessment reveals accuracy significantly over 60 percent. The result is encouraging and would be a basis for further study to realize the full potential and limitation of this technique.

  • PDF

Assessment of Trophic State for Yongdam Reservoir Using Satellite Imagery Data (인공위성 영상자료를 이용한 용담호의 영양상태 평가)

  • Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • The conventional water quality measurements by point sampling provide only site specific temporal water quality information but not the synoptic geographic coverage of water quality distribution. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly involved in the water quality monitoring research. In other to assess a trophic state of Yongdam reservoir using satellite imagery data, I obtained Landsat ETM data and water quality data on 16th September and 18th October 2001. The approach involved acquisition of water quality samples from boats at 33 sites on 16th September and 30 sites on 18th October 2001, simultaneous with Landsat-7 satellite overpass. The correlation coefficients between the DN values of the imagery and the concentrations of chlorophyll-a were analyzed. The visible bands(band 1,2,3) and near infrared band(band 4) data of September image showed the correlation coefficient values higher than 0.9. The October image showed the correlation coefficient values about 0.7 due to the atmospheric effect and low variation of chlorophyll-a concentration. Regression models between the chrophyll-a concentration and DN values of the Landsat imagery data have been developed for each image. The regression model was determined based on the spectral characteristics of chlorophyll, so the green band(band 2) and near infrared band(band 4) were selected to generate a trophic state map. The coefficient of determination(R2) of the regression model for 16th September was 0.95 and that of the regression model for 18th October was 0.55. According to the trophic state map made based on Aizaki's TSI and chlorophyll-a concentration, the trophic state of Yongdam reservoir was mostly eutrophic state during this study.

Hydrosphere Change Detection of the Basin using Multi-temporal Landsat Satellite Imagery (다시기 Landsat영상을 이용한 유역의 수계 변화 탐지)

  • Kang, Joon-Mook;Park, Joon-Kyu;Um, Dae-Yong;Lee, Yong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.31-39
    • /
    • 2007
  • In this study, the hydrosphere change of the Daecheong dam basin was detected qualitatively and quantitatively using Landsat satellite images until recentness since the construction of Daecheong dam. The hydrosphere change of the basin was analyzed by applying supervised classification about Landsat satellite images which were classified according to the hydrosphere, vegetation, road and etc. for four distinct years which are 1981, 1987, 1993, and 2002 year. Landsat satellite images of each year were achieved overlay analysis with extracting only the hydrosphere, and though these results, the hydrosphere change of the Daecheong dam basin was monitored efficiently.

  • PDF

Enhancing LANDSAT TM to update the structural analysis of the Mirs Bay Basin, Hong Kong, China

  • Leung, K.F.;Vohora, V.K.;Chan, L.S.;Malpas, J.G.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.295-297
    • /
    • 2003
  • The coastal provinces of South China have been uniquely shaped by various tectonic events. During the midlate Mesozoic tectono-thermal event, the oblique subduction of the Paleo Kula-Pacific plate beneath the Eurasian plate has created a complicated tectonic setting for the whole region. However, the mechanism of this event is not completely understood. In this paper, we discuss the advantages of using LANDSAT TM satellite imagery over a small part of the region - the Mirs Bay Basin which is largely covered by dense vegetation and where limited outcrops is seen. The use of satellite imagery complements field mapping and the result shows a prominent sinistral offset along the eastern margin of the Mirs Bay Basin, which was not previously recognized on the ground.

  • PDF