This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.
Kim Jeong-Hwan;Lee Kyung-Tae;Kim Hyung-Chul;Yang Jin-Ok;Hahn Yoon-Soo;Kim Sang-Soo;Kim Seon-Young;Yoo Hyang-Sook;Kim Yong-Sung
Genomics & Informatics
/
v.4
no.1
/
pp.1-10
/
2006
Epigenetic alterations are common features of human solid tumors, though global DNA methylation has been difficult to assess. Restriction Landmark Genomic Scanning (RLGS) is one of technology to examine epigenetic alterations at several thousand Notl sites of promoter regions in tumor genome. To assess sequence information for Notl sequences in RLGS gel, we cloned 1,161 unique Notl-linked clones, compromising about 60% of the spots in the soluble region of RLGS profile, and performed BLAT searches on the UCSC genome server, May 2004 Freeze. 1,023 (88%) unique sequences were matched to the CpG islands of human genome showing a large bias of RLGS toward identifying potential genes or CpG islands. The cloned Notl-loci had a high frequency (71%) of occurrence within CpG islands near the 5' ends of known genes rather than within CpG islands near the 3' ends or intragenic regions, making RLGS a potent tool for the identification of gene-associated methylation events. By mixing RLGS gels with all Notl-linked clones, we addressed 151 Notl sequences onto a standard RLGS gel and compared them with previous reports from several types of tumors. We hope our sequence information will be useful to identify novel epigenetic targets in any types of tumor genome.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.3
/
pp.108-118
/
2017
This paper presents experimental results of realtime sonar-based SLAM (simultaneous localization and mapping) using probability-based landmark-recognition. The sonar-based SLAM is used for navigation of underwater robot. Inertial sensor as IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) and external information from sonar image processing are fused by Extended Kalman Filter (EKF) technique to get the navigation information. The vehicle location is estimated by inertial sensor data, and it is corrected by sonar data which provides relative position between the vehicle and the landmark on the bottom of the basin. For the verification of the proposed method, the experiments were performed in a basin environment using an underwater robot, yShark.
Journal of Institute of Control, Robotics and Systems
/
v.12
no.4
/
pp.389-394
/
2006
Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.
Position estimation is one of the most important functions for the mobile robot navigating in the unstructured environment. Most of previous localization schemes estimate current position and pose of mobile robot by applying various localization algorithms with the information obtained from sensors which are set on the mobile robot, or by recognizing an artificial landmark attached on the wall, or objects of the environment as natural landmark in the indoor environment. Several drawbacks about them have been brought up. To compensate the drawbacks, a new localization method that estimates the absolute position of the mobile robot by using a fixed camera on the ceiling in the corridor is proposed. And also, it can improve the success rate for position estimation using the proposed method, which calculates the real size of an object. This scheme is not a relative localization, which decreases the position error through algorithms with noisy sensor data, but a kind of absolute localization. The effectiveness of the proposed localization scheme is demonstrated through the experiments.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.5
/
pp.339-348
/
2017
Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.
Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localitzation technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.
This paper proposes a vehicle license plate detection method in real road environments using 8 bit-MCT features and a landmark-based Adaboost method. The proposed method allows identification of the potential license plate region, and generates a saliency map that presents the license plate's location probability based on the Adaboost classification score. The candidate regions whose scores are higher than the given threshold are chosen from the saliency map. Each candidate region is adjusted by the local image variance and verified by the SVM and the histograms of the 8bit-MCT features. The proposed method achieves a detection accuracy of 85% from various road images in Korea and Europe.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.4
/
pp.381-390
/
2010
This paper describes a procedure of the map-based localization for mobile robots by using a sensor fusion technique in structured environments. A combination of various sensors with different characteristics and limited sensibility has advantages in view of complementariness and cooperation to obtain better information on the environment. In this paper, for robust self-localization of a mobile robot with a monocular camera and a laser structured light sensor, environment information acquired from two sensors is combined and fused by a Bayesian sensor fusion technique based on the probabilistic reliability function of each sensor predefined through experiments. For the self-localization using the monocular vision, the robot utilizes image features consisting of vertical edge lines from input camera images, and they are used as natural landmark points in self-localization process. However, in case of using the laser structured light sensor, it utilizes geometrical features composed of corners and planes as natural landmark shapes during this process, which are extracted from range data at a constant height from the navigation floor. Although only each feature group of them is sometimes useful to localize mobile robots, all features from the two sensors are simultaneously used and fused in term of information for reliable localization under various environment conditions. To verify the advantage of using multi-sensor fusion, a series of experiments are performed, and experimental results are discussed in detail.
Journal of the Korea Society of Computer and Information
/
v.10
no.3
s.35
/
pp.173-182
/
2005
In this paper, we propose a landmark recognition method which is irrelevant to the camera viewpoint on the navigation for localization. Features in previous research is variable to camera viewpoint, therefore due to the wealth of information, extraction of visual landmarks for positioning is not an easy task. The proposed method in this paper, has the three following stages; first, extraction of features, second, learning and recognition, third, matching. In the feature extraction stage, we set the interest areas of the image. where we extract the corner points. And then, we extract features more accurate and resistant to noise through statistical analysis of a small eigenvalue. In learning and recognition stage, we form robust feature models by testing whether the feature model consisted of five corner points is an invariant feature irrelevant to viewpoint. In the matching stage, we reduce time complexity and find correspondence accurately by matching method using similarity evaluation function and Graham search method. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.