3 차원 인체 스캔 차원 기술의 활용도는 정확도의 개선과 가격의 저렴화로 인해 산업계에서 점점 부각되고 있다. 이런 인체 스캔 데이터의 활용도를 높이기 위해서는 인체 스캔 데이터의 기준점 추출이 필수적이다. 본 논문에서는 자동으로 인체 스캔 데이터의 기준점을 추출하는 알고리즘을 제안한다. 이를 위해 여러 인체 스캔 데이터들을 활용하여 주성분 분석을 하고 최적화를 거쳐 마커 없는 매칭을 수행한다. 최종적으로는 생성된 인체 모델의 위상 구조에서 기준점을 추출한다.
We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.
This study aims to develop algorithms for automatic extraction landmarks from the lower body of women aged 20-54 using the Grasshopper programming language, based on 3D scan data in the 8th SizeKorea dataset. First, 11 landmarks were defined using the morphological features of 3D body surfaces and clothing applications, from which automatic landmark extraction algorithms were developed. To verify the accuracy of the algorithm, this study developed an additional algorithm that could automatically measure 16 items, and algorithm-derived measurements and SizeKorea measurements were compared using paired t-test analysis. The statistical differences between the scan-derived measurements and the SizeKorea measurements were compared, with an allowable tolerance of ISO 20685-1:2018. This study found that the algorithm successfully identified most items except for the crotch point and gluteal fold point. In the case of landmarks with significant differences, the algorithms were modified. This study was significant because scan editing, landmark search, and measurement extraction were successfully performed in one interface, and the developed algorithm has a high efficiency and strong adaptability.
모바일 기기의 기술 발전과 대중화는 어디서든 사용자의 위치를 확인할 수 있으며 인터넷을 사용할 수 있도록 발전되었다. 그러나 실내의 경우 인터넷은 끊김없이 사용할 수 있지만 global positioning system (GPS) 기능은 활용하기 어렵다. 실내 공공장소인 백화점, 박물관, 컨퍼런스장, 학교, 터널 등 GPS가 수신되지 않는 음영 지역에서 실시간 위치정보 제공의 필요성이 증가하고 있다. 이에 따라 최근의 실내 측위 기술은 랜드마크 데이터베이스를 구축하기 위해 light detection and ranging (LiDAR) 장비를 기반으로 연구가 증가하고 있다. 본 연구에서는 랜드마크 데이터베이스 구축의 접근성에 초점을 두어 모바일 기기를 기반으로 랜드마크를 촬영한 단일 이미지와 사전에 구축된 랜드마크 데이터베이스 정보를 이용하여 사용자의 위치를 추정하는 기법을 개발하고자 하였다. 첫 번째로, 랜드마크 데이터베이스를 구축하였다. 랜드마크를 촬영한 모바일 이미지만으로 사용자 위치를 추정하기 위해서는 모바일 이미지에서 랜드마크 검출이 필수적이고, 검출된 랜드마크에서 고정적인 성격을 가진 지점의 지상좌표 취득이 필수적이다. 두 번째 단계에서는 bag of words (BoW) 영상 검색 기술을 적용해 랜드마크 데이터베이스 중 모바일 이미지가 촬영한 랜드마크를 유사한 4위까지 검색하였다. 세 번째 단계에서는 scale invariant feature transform (SIFT) 특징점 추출 기법과 Homography random sample consensus (RANSAC)을 통해 검색된 4개의 후보 랜드마크들 중 가장 유사한 하나의 랜드마크를 선정하였고, 이때 임계값 설정을 통해 정합점 수를 기반으로 한 차례 더 필터링을 수행하였다. 네 번째 단계에서는 대응된 랜드마크와 모바일 이미지간의 Homography 행렬을 통해 랜드마크 이미지를 모바일 이미지에 투사하여 랜드마크의 영역과 코너(외곽선)점을 검출하였다. 마지막으로, 위치추정 기법을 통해 사용자의 위치를 추정하였다. 해당 기술의 성능을 분석한 결과, 랜드마크 검색 성능은 약 86%로 측정되었다. 위치추정 결과와 사용자의 실제 지상좌표를 비교한 결과, 약 0.56 m의 수평 위치 정확도를 갖는 것이 확인되어 별도의 고가 장비 없이 랜드마크 데이터베이스를 구축하여 모바일 영상으로 사용자 위치 추정이 가능한 것을 확인하였다.
2DE는 조직 내의 단백질을 규명하는 단백질 분리 기술이다. 그러나 2DE 이미지는 실험 조건, 스캐닝 상태와 같은 환경에 민감하게 영향을 받는다. 이러한 이미지간의 변화를 극복하기 위해서 사용자는 각각의 서로 다른 이미지에 수동으로 기준점을 입력해주어야 한다. 그러나 이 과정은 에러를 발생시키며 긴 시간을 요구하는 작업으로, 빠른 분석에 장애 요인이 된다. 따라서 본 논문에서는 기준점 프로파일에 기반 하여 기준점을 자동으로 추출하는 방법을 개발하였다. 기준점 프로파일은 이미 확인된 이미지들의 기준점들에 대한 클러스터링 방법을 통하여 생성하며, 각 클러스터의 다양한 속성을 정의한다. 새로운 이미지가 입력되면 기준점의 후보 스팟들을 대상으로 프로파일과 비교하석 기준점을 추출한다. 그리고 $A^*$알고리즘을 이용하여 기준점 선정 과정을 최적화한다. 본 논문에서는 실제 사람의 간 조직 이미지를 이용하여 기준점 추출 방법의 성능을 분석하였다
착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.
초분광 영상에 내재된 비선형 현상을 다루기 위해서는 과거에 주로 사용되었던 선형 피처 추출 방법은 적합하지 않았다. 따라서 최근 Manifold learning이라 불리우는 비선형 피처 추출 방법이 초분광 원격탐사 분야를 비롯 여러 분야에서 관심이 증가되고 있다. Manifold learning 방법 중 널리 이용되는 Isomap은 분류와 분광 혼합 분석 등의 분야에서 좋은 결과를 보여주지만, 지나치게 복잡하고 높은 계산량은, 특히 원격탐사 자료와 같이 자료의 크기가 큰 경우 문제가 된다. 따라서 자료의 일부분을 이용하는 랜드마크 기법이 해결책으로 제안 되었다. 본 연구에서는 좀 더 통제가 가능한 랜드마크 추출을 위해 자료를 구성하는 최대 부피를 지닌 Simplex를 이용하여 랜드마크를 선택하는 방법을 제안한다. 초분광 영상을 이용하여 랜드마크의 개수, 선택 방법에 따른 분류 정확도와 편차, 그리고 처리 시간을 비교하였고, 그 결과 제안된 랜드마크 선택 기법은 분류 정확도, 처리시간 모두에서 효율적인 결과를 보여주었다.
본 연구에서는 보행자가 갈림길을 만났을 때 랜드마크로 활용할 수 있는 건물을 기 구축된 공간정보로부터 자동으로 추출하는 방법을 제안한다. 이를 위해 먼저 각 갈림길에서 보행자의 시야를 바탕으로 랜드마크 후보군을 정의한 뒤, 후보군의 기하 정보와 속성 정보를 상대적 기준과 절대적 기준으로 구분하여 평가함으로써 랜드마크를 추출하였다. 제안된 방법을 도로명 주소 전자지도의 수원 일부지역에 적용하여 추출된 랜드 마크를 기존의 차량용 랜드마크와 비교한 결과 차량용 랜드마크가 추출되는 것으로 나타났으며, 각 선택점에서 주로 보행자의 눈에 띄기 쉬운 모퉁이에 위치한 건물들이 랜드마크로 선정되었다. 따라서 추출된 랜드마크를 활용하여 보행자 내비게이션 시스템에서 보다 정확한 길안내를 제공할 수 있을 것으로 판단된다.
2008년도에 발사 예정인 통신해양기상위성은 자동 영상기반 항법을 수행할 예정이다. 자동 영상기반 항법을 위해서는 랜드마크 칩과 영상간의 정합을 수행하는 랜드마크 검출도 자동 수행되어야 한다. 그러기 위해서는 자동 정합의 문제점인 오정합에 대한 해결책이 필요하다. 이런 문제를 해결하기 위해서 우리는 강인추정기법 중 하나인 Random Sample Consensus (RANSAC)를 통한 자동 오정합 판별을 제안한다. 우리는 RANSAC을 이용한 자동 오정합 판별을 실험하기 위해서 GOES-9의 영상과 해안선 데이터베이스에서 추출한 30개의 랜드마크 칩을 이용하여 정합을 수행하였다. 정합수행 후에 RANSAC 추정 기법으로 오정합을 판별해 내었으며, RANSAC에 오차 임계값으로 2.5 픽셀을 설정했을 때, 모든 오정합을 판별할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.