• Title/Summary/Keyword: Landmark extraction

Search Result 27, Processing Time 0.023 seconds

Landmark Extraction for 3D Human Body Scan Data Using Markerless Matching (마커 없는 매칭을 활용한 3 차원 인체 스캔 데이터의 기준점 추출)

  • Yoon, Dong-Wook;Heo, Nam-Bin;Ko, Hyeong-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.163-167
    • /
    • 2009
  • 3D human body scan technique is known to be practically useful in industrial field as the technique becomes more precise and cheaper. Landmark extraction is essential for full utilization of the scan data. In this paper, we suggest an algorithm for automatic landmark extraction. For this purpose, we perform markerless matching to the target data using PCA analysis and quasi-Newton optimization. Landmarks are extracted from the topology of resulting body.

  • PDF

An Effective Retinal Vessel and Landmark Detection Algorithm in RGB images

  • Jung Eun-Hwa
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.27-32
    • /
    • 2006
  • We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.

  • PDF

Development of an Algorithm for Automatic Extraction of Lower Body Landmarks Using Grasshopper Programming Language (Grasshopper 프로그래밍 기반 3D 인체형상의 하반신 기준점 자동탐색 알고리즘 설계)

  • Eun Joo Ryu;Hwa Kyung Song
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.171-190
    • /
    • 2023
  • This study aims to develop algorithms for automatic extraction landmarks from the lower body of women aged 20-54 using the Grasshopper programming language, based on 3D scan data in the 8th SizeKorea dataset. First, 11 landmarks were defined using the morphological features of 3D body surfaces and clothing applications, from which automatic landmark extraction algorithms were developed. To verify the accuracy of the algorithm, this study developed an additional algorithm that could automatically measure 16 items, and algorithm-derived measurements and SizeKorea measurements were compared using paired t-test analysis. The statistical differences between the scan-derived measurements and the SizeKorea measurements were compared, with an allowable tolerance of ISO 20685-1:2018. This study found that the algorithm successfully identified most items except for the crotch point and gluteal fold point. In the case of landmarks with significant differences, the algorithms were modified. This study was significant because scan editing, landmark search, and measurement extraction were successfully performed in one interface, and the developed algorithm has a high efficiency and strong adaptability.

Mobile Camera-Based Positioning Method by Applying Landmark Corner Extraction (랜드마크 코너 추출을 적용한 모바일 카메라 기반 위치결정 기법)

  • Yoo Jin Lee;Wansang Yoon;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1309-1320
    • /
    • 2023
  • The technological development and popularization of mobile devices have developed so that users can check their location anywhere and use the Internet. However, in the case of indoors, the Internet can be used smoothly, but the global positioning system (GPS) function is difficult to use. There is an increasing need to provide real-time location information in shaded areas where GPS is not received, such as department stores, museums, conference halls, schools, and tunnels, which are indoor public places. Accordingly, research on the recent indoor positioning technology based on light detection and ranging (LiDAR) equipment is increasing to build a landmark database. Focusing on the accessibility of building a landmark database, this study attempted to develop a technique for estimating the user's location by using a single image taken of a landmark based on a mobile device and the landmark database information constructed in advance. First, a landmark database was constructed. In order to estimate the user's location only with the mobile image photographing the landmark, it is essential to detect the landmark from the mobile image, and to acquire the ground coordinates of the points with fixed characteristics from the detected landmark. In the second step, by applying the bag of words (BoW) image search technology, the landmark photographed by the mobile image among the landmark database was searched up to a similar 4th place. In the third step, one of the four candidate landmarks searched through the scale invariant feature transform (SIFT) feature point extraction technique and Homography random sample consensus(RANSAC) was selected, and at this time, filtering was performed once more based on the number of matching points through threshold setting. In the fourth step, the landmark image was projected onto the mobile image through the Homography matrix between the corresponding landmark and the mobile image to detect the area of the landmark and the corner. Finally, the user's location was estimated through the location estimation technique. As a result of analyzing the performance of the technology, the landmark search performance was measured to be about 86%. As a result of comparing the location estimation result with the user's actual ground coordinate, it was confirmed that it had a horizontal location accuracy of about 0.56 m, and it was confirmed that the user's location could be estimated with a mobile image by constructing a landmark database without separate expensive equipment.

Automated Method of Landmark Extraction for Protein 2DE Images based on Multi-dimensional Clustering (다차원 클러스터링 기반의 단백질 2DE 이미지에서의 자동화된 기준점 추출 방법)

  • Shim, Jung-Eun;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.719-728
    • /
    • 2005
  • 2-dimensional electrophoresis(2DE) is a separation technique to identify proteins contained in a sample. However, the image is very sensitive to its experimental conditions as well as the quality of scanning. In order to adjust the possible variation of spots in a particular image, a user should manually annotate landmark spots on each gel image to analyze the spots of different images together. However, this operation is an error-prone and tedious job. This thesis develops an automated method of extracting the landmark spots of an image based on landmark profile. The landmark profile is created by clustering the previously identified landmarks of sample images of the same type. The profile contains the various properties of clusters identified for each landmark. When the landmarks of a new image need to be fount all the candidate spots of each landmark are first identified by examining the properties of its clusters. Subsequently, all the landmark spots of the new image are collectively found by the well-known optimization algorithm $A^*$. The performance of this method is illustrated by various experiments on real 2DE images of mouse's brain-tissues.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Maximum Simplex Volume based Landmark Selection for Isomap (최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • Since traditional linear feature extraction methods are unable to handle nonlinear characteristics often exhibited in hyperspectral imagery, nonlinear feature extraction, also known as manifold learning, is receiving increased attention in hyperspectral remote sensing society as well as other community. A most widely used manifold Isomap is generally promising good results in classification and spectral unmixing tasks, but significantly high computational overhead is problematic, especially for large scale remotely sensed data. A small subset of distinguishing points, referred to as landmarks, is proposed as a solution. This study proposes a new robust and controllable landmark selection method based on the maximum volume of the simplex spanned by landmarks. The experiments are conducted to compare classification accuracies with standard deviation according to sampling methods, the number of landmarks, and processing time. The proposed method could employ both classification accuracy and computational efficiency.

Extraction of Landmarks for Pedestrian Navigation System (보행자 내비게이션 시스템을 위한 랜드마크 추출 방법)

  • Rho, Gon-Il;Kim, Ji-Young;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2011
  • This study is to extract landmark buildings for pedestrian navigation from the existing spatial data sets automatically. At first, we defined candidates for landmark based on sight of pedestrian, then extracted final landmark by evaluating attributes of each candidate. The attribute is evaluated with relative or absolute criteria depending on the nature of each attribute. Landmarks extracted through the proposed method are compared to existing landmarks for vehicle and assessment of the validity and the applicability is performed. As a result, extracted Landmarks are expected to help guiding pedestrian effectively.

Automated Landmark Extraction based on Matching and Robust Estimation with Geostationary Weather Satellite Images (정합과 강인추정 기법에 기반한 정지궤도 기상위성 영상에서의 자동 랜드마크 추출기법 연구)

  • Lee Tae-Yoon;Kim Taejung;Choi Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.505-516
    • /
    • 2005
  • The Communications, Oceanography and Meteorology Satellite(COMS) will be launched in 2008. Ground processing for COMS includes the process of automatic image navigation. Image navigation requires landmark detection by matching COMS images against landmark chips. For automatic image navigation, a matching must be performed automatically However, if matching results contain errors, the accuracy of Image navigation deteriorates. To overcome this problem, we propose use of a robust estimation technique called Random Sample Consensus (RANSAC) to automatically detect erroneous matching. We tested GOES-9 satellite images with 30 landmark chips that were extracted from the world shoreline database. After matching, mismatch results were detected automatically by RANSAC. All mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.