• Title/Summary/Keyword: Landization

Search Result 6, Processing Time 0.022 seconds

Study on the Flora and Vegetation of the High Moor in Mt. Daeam (대암산 고층습원의 식물상과 식생)

  • Kang, Sang-Joon;Kwak, Ae-Kyung
    • Journal of Wetlands Research
    • /
    • v.2 no.2
    • /
    • pp.117-131
    • /
    • 2000
  • The flora and vegetaion of the high moor in Mt. Daeam($128^{\circ}07^{\prime}E$, $38^{\circ}13^{\prime}N$) was investigated by the phytosociological method of Braun-Blanquet's from 13 - 14th June to 7 - 8th August, 1998. The flora of plants recorded in high moor was 191 taxa belonging to 53 families, 131 genera, 160 species, 30 varieties, 1 formas. The high moor vegetation of Sanguisorba tenuifolia var. alba community group in this survey trip was classified into 11 communities as follows : Carex dispalata community and Sphagnum palustre community at the interior of moor, Carex biwensis community and Juncus papillosus community at the regenerated area and Malinia japonica community, Spiraea salicifolia community, Geranium eriosteman var. megalanthum - Calamagrostis langsdorffii community, Juncus effusus var. decipiens community, Salix koreensis community, Caltha palustris var. membranacea community and Sparganium stoloniferum community at the margin of moor. As a result of this study, the change of plant communities on high moor was closely influenced by landization in relation to the disturbance of human since 1969.

  • PDF

Vegetation of Jangdo wetland conserved area in South Korea and its management strategy (장도습지보호지역의 식생 특성과 관리방안)

  • Lee, Seung-Yeon;Hong, Yong-Sik;Jung, Heon-Mo;Lee, Eung-Pill;Kim, Eui-Joo;Park, Jae-Hoon;Jung, Young-Ho;Cho, Kyu-Tae;You, Young-Han
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study was carried out to investigate the vegetation of wetland and terrestrial lands in Jangdo wetland conserved area in Korea and to analyze the characteristics of the vegetation changes in the recent years. From the plant community, there were evergreen broad-leaved forests of the Machilus thunbergii, Castanopsis cuspidata, and Machilus thunbergii-Castanopsis cuspidata communities. Moreover, there were deciduous broad-leaved forests of the Salix koreensis, Mallotus japonicus, Mallotus japonicus-Pueraria thunbergiana and Celtis sinensis communities. Additionally, there were shrub forests of the Rosa multiflora-Rubus hirsutus, grassland of Molinia japonica-Miscanthus sacchariflorus and Miscanthus sacchariflorus-Imperata cylindrica communities, and plantation forest of the Pseudosasa japonica community. The area of the wetland vegetation (15%) was much narrower than that of the terrestrial land vegetation (85%). Comparing these results with those of the past 10 years, the wetland plant communities decreased by one-third and the proportion of neutral or dry plant communities increased. In order to mitigate landization succession of the wetland and maintain native wetland vegetation in this area, the expansion of the Salix koreensis community must be controlled to a suitable scale. In addition, it is urgently required to remove the invasive non-wetland plants, such as Pseudosasa japonica and Pueraria thunbergiana.

A Study on Land-cover and Sedimentary Environment Changes Before and After the 2020 Flood in the Seomjin River Chimsil Wetland (섬진강침실습지의 2020년 홍수 전·후 토지피복 및 퇴적환경 변화 연구)

  • Lee, Ye-Seul;Lim, Jeong-Cheol;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.15-30
    • /
    • 2021
  • This study analyzed the changes in land-cover and sedimentary environment before and after flooding through drone images and sediment analysis for the Seomjin River Chimsil Wetland. The results showed that the area of some land-covers such as sand bar, grass, and trees were continuously changed. The acidity level of the sediments in the Seomjin River Chimsil Wetland was weakened gradually by flooding and EC was also decreased. The levels of organic matter, effective phosphoric acid, and CEC, however, were fluctuating depending on branches, which seems to be the result of landization as new sedimentary environment was developed and vegetation was settled after the flood. Average mean size of river sediments was found to be fine sand, and it exhibited various particle size characteristics from granule to medium silt depending on the location. As the sedimentary environment changed due to the effects of floods and typhoons, the particles were granulated or grain refined depending on the position. In the Seomjin River Chimsil Wetland, there were factors that could interfere with geomorphic development and sedimentary environment, contamination sources in and around the wetland, and natural threat factors. Therefore, in this study, a conservation and management plan was proposed to remove these threat factors and to preserve the scarcity, naturalness, and dynamics of Seomjin River Chimsil Wetland.

Analyzing Spectral Characteristics of Salt Marsh Vegetation Around Donggumdo Tidal Flat in Ganghwado, Korea (강화도 동검도 주변 조간대 내에 서식하는 염생식물의 분광특성 분석)

  • Lee, Yoon-Kyung;Eom, Jin-Ah;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.575-581
    • /
    • 2007
  • Suaeda japonica is the one of halophyte species which is widely spread in the Ganghwado tidal flat. Halophyte affects to the vertical development of wetland by enhancing the adhesion force of sediments. If demineralization of tidal flat proceeds, the colony of halophyte moves to the seaside where has relatively high salinity content. The change of halophyte zonation can be an environmental indicator to understand the landization of tidal flat. To interpret the spectral characteristics of halophyte, we measured the reflectance of suaeda japonica, reed and sediment around Donggumdo tidal flat in Ganghwado. First and second-derivation analysis was applied to these transformed spectra in order to identify which spectral ranges were distinguished with different coastal wetland vegetation and artificial structures. From the result, red reflectance peak of suaeda japonica were appeared at 600-650nm and greed reflectance peak of reed were appeared at 500-570nm. Spectra of sediments were continuously increased from 350-550nm without any absorption by chlorophyll. These reflectance were easily identified among the spectra of halophyte.

The Changes in Vascular Plants and Management Plan for Outstanding Forest Wetlands in Goheung-gun, Jeollanam-do (전라남도 고흥군 우량 산림습원의 관속식물상 변화와 관리방안)

  • Jun Hyuk Lee;Jeong Eun Lee;Jun Gi Byeon;Jong Bin An;Ho Jin Kim;Chung Weon Yun
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.254-265
    • /
    • 2024
  • This study was conducted to investigate the vascular flora of two outstanding forest wetlands(OFW) in Goheung-gun, Jeollanam-do, and to prepare an efficient management plan for forest wetlands through comparison with previous studies. Fieldwork was conducted seasonally from May to October 2023, The flora in the two OFW located in Goheung-gun, Jeollanam-do, consisted of 117 taxa such as 55 families, 92 genera, 108 species, 7 variants, 1 variety and 1 hybrid. The endemic plants were 4 taxa and rare plants were 7 taxa. Floristic target plants were V class 2 taxa, IV class 6 taxa, III class 8 taxa, II class 4 taxa and Iclass 21 taxa. Climate change adaptation plants were 10 taxa and naturalized plants was 1 taxa. Obligate wetland plants were 16 taxa, Facultative wetland plants 10 taxa and Facultative plant 4 taxa. OFW functioning a typical wetland ecosystem in Goheung-gun had been providing habitats for a variety of rare plants, such as the Habenaria radiata and Drosera rotundifolia. But those ecosystems would be suffering a critical disturbance such as human interference, the invasion of naturalized plants, and change of wetland function through landization for a short future. Therefore we suggest those OFWs should be designated as a Forest Genetic Resource Reserve in order to keep the ecosystems permanently and to manage them more soundly and efficiently.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.