• Title/Summary/Keyword: Landing Height

Search Result 107, Processing Time 0.02 seconds

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

A comparison study for mask plantar pressure measures to the difference of shoes in 20 female (20대 여성의 신발종류에 따른 족저압 영역별 비교 연구)

  • Kim, Y.J.;Ji, J.G.;Kim, J.T.;Hong, J.H.;Lee, J.S.;Lee, H.S.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Kinematic Analysis of the Men's Long Jump in the IAAF World Championships Daegu 2011 (2011 대구세계육상선수권대회 남자 멀리뛰기 경기의 운동학적 분석)

  • Seo, Jung-Suk;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Kim, Ho-Mook
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.595-602
    • /
    • 2011
  • The long jump motion of 8 finalist of men's long jump of IAAF World Championships Daegu 2011 were analysed and the kinematic characteristics of the technique were investigated. The kinematic characteristics of long jump motion of 8 finalist were as follows. In the run-up phase, the average length of 3, 2, and 1 stride were $2.21{\pm}0.08$ m, $2.46{\pm}0.18$ m, and $2.19{\pm}0.16$ m, respectively. The change in the height of the center of gravity was $0.09{\pm}0.02$ m. The average velocity of 3, 2, and 1 stride was $10.37{\pm}0.32$ m/s, $9.63{\pm}0.32$ m/s, and $10.69{\pm}10.69$ m/s, respectively. In the take-off phase, the horizontal velocity, the vertical velocity, the reduction of horizontal velocity was $9.00{\pm}0.37$ m/s, $3.04{\pm}0.27$ m/s, and $1.69{\pm}0.34$ m/s, respectively. The minimum knee angle and the take off angle was $157{\pm}6.57^{\circ}$ and $18.5{\pm}2.24^{\circ}$, respectively. In the flight phase, the flight time and the maximum height of the center of gravity was $0.82{\pm}0.05$ s, and $1.70{\pm}0.10$ m, respectively. In the landing phase, the landing length was $0.51{\pm}0.06$ m. The body angle, the knee angle, and the hip angle was $71{\pm}20.93^{\circ}$, $136{\pm}19.19^{\circ}$, and $85{\pm}9.58^{\circ}$, respectively. The kinematic characteristics of long jump motion with good record were shown as follows. The reduction of the horizontal velocity in the take-off phase was minimized while the velocity of the run-up were maximally maintained. The vertical velocity in the take-off phase was increased with rapidly extended knee and the high center of gravity.

Kinematic Analysis of Women's Long Jump at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 여자 멀리뛰기 경기의 운동학적 분석)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • The long jump motions of 8 finalists in the women's long jump at the IAAF World Championships, Daegu 2011 were analyzed, and the kinematic characteristics of their techniques were investigated. The kinematic characteristics of the long jump motion of the 8 finalists were as follows. In the run-up phase, the length of the 2 stride was $108{\pm}6.92%$ that of the 3 stride. The length of the 1 stride was $91{\pm}5.78%$ that of the 2 stride. The change in the height of the center of gravity was $0.07{\pm}0.03$ m. The maximum velocity during the run-up phase was $9.44{\pm}0.13$ m at the 1 stride. In the take-off phase, the horizontal velocity, vertical velocity, reduction in horizontal velocity were $7.80{\pm}0.15$ m/s, $2.96{\pm}0.14$ m/s, and $1.64{\pm}0.19$ m/s, respectively. The minimum knee angle and take-off angle were $151{\pm}8.89^{\circ}$ and $20.7{\pm}1.03^{\circ}$, respectively. In the flight phase, the flight time and maximum height of the center of gravity were $0.78{\pm}0.03$ s, and $1.60{\pm}0.05$ m, respectively. In the landing phase, the landing length was $0.50{\pm}0.07$ m. The trunk angle, knee angle, and hip angle were $74{\pm}18.75^{\circ}$, $131{\pm}10.45^{\circ}$, and $82{\pm}9.03^{\circ}$, respectively. The kinematic characteristics of the motion of a good long jump were as follows. The reduction in the horizontal velocity in the take-off phase was minimized, and the maximum velocity of the run-up was maintained. The vertical velocity in the take-off phase was increased using a rapidly extended knee and high center of gravity.

Effects of lower extremity stability by kinesio taping method in elite speed skating athletes' one-leg jumping (엘리트 빙상 선수들의 외발점프 훈련 시 키네시오 테이핑요법이 하지관절 안정성에 미치는 영향)

  • Lee, Young-Seok;Kwak, Chang-Soo;Lee, Chung-Il;Kim, Tae-Gyu
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.495-502
    • /
    • 2015
  • The purpose of this study was to investigating the effect of taping knee by testing the difference on kinetic variables of lower extremity when speed skating athletes jump on one leg. The results were as follows. The height of jumping after taping was higher, but the vertical height was not different according to taping. On take-off(TO), the horizontal and anterior-posterior maximum impulse force were decreased while the vertical maximum impact force was increased after taping. On landing(LD), the anterior-posterior maximum impulse force was decreased but the horizontal and vertical maximum impulse force were increased. TO, the impulse showed low after taping and the impulse dropped largely LD. The knee's moment of extension, eversion were reduced after tapping TO. LD, the flection moment of knee was decreased, but the inversion moment was increased after tapping. This study implies that the knee tapping helps injury prevention and performance enhancement, sports medicine convergence are needed.

Kinematic Analysis of Hurdle Clearance Technique for 110-m Men's Hurdlers at IAAF World Championships, Daegue 2011 (2011 대구세계육상선수권대회 110m 허들 선수의 허들링 기술 동작의 운동학적 분석)

  • Park, Young-Jin;Ryu, Jae-Kyun;Ryu, Ji-Seon;Kim, Tae-Sam;Hwang, Won-Seob;Park, Sang-Kyoon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.529-540
    • /
    • 2011
  • The purpose of this study was to evaluate the kinematic characteristics of $5^{th}$ and $6^{th}$ hurdle clearances during the final of the 110-m hurdles at the IAAF World Championships, Daegu 2011. To this end, the hurdling motions of the top 4 ranked male hurdlers in the competition were analyzed. A total of 12 cameras were used to record their motions, with a sampling frequency of 120 Hz. The cameras were calibrated using $11{\times}2{\times}1\;m$ control objects that covered all of the lanes (1st~8th lanes). After analyzing all the data, we arrived at the following results. In the take-off phase, all athletes revealed similar take-off times (CT), and similar distances from the take-off to hurdleto (L1) and hurdle to landing (L2). In particular, Turner, ranked $3^{rd}$, had an inconsistent L2 and may need further training to correct it. In the flight phase, Richardson, ranked $1^{st}$, showed the longest flight distance, whereas Xiang, who was ranked $2^{nd}$, showed the highest CG height from the hurdle. For the step patterns, to increase the pitch frequency, Richardson and Xiang used shorter 3-step lengths than Turner and Oliver.

A Comparative Analysis of the Finger Pressure and Kinematic Variables in the Forehand Hairpin Net Shot According to Proficiency (배드민턴 포핸드 헤어핀 동작 시 숙련 정도에 따른 손가락 압력 및 운동학적 변인 비교 분석)

  • Lee, Haeng-Seob;Chae, Woen-Sik;Jung, Jea-Hu
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.387-394
    • /
    • 2012
  • The purpose of this study was to compare and analyze the finger pressure and kinematic variables in the forehand hairpin net shot between skilled elite players and less skilled recreational players. Eight elite players(age: $18.1{\pm}0.8yrs$, height: $176.8{\pm}1.5cm$, weight: $640.9{\pm}48.6N$) with minimum of 6 years of experience and eight recreational players(age: $27.9{\pm}1.6yrs$, height: $177.1{\pm}6.1cm$, weight: $820.5{\pm}62.8N$) with less than one year experience were recruited in this study. For each trial being analyzed, four critical instants were identified from the video recordings: Right heel contact1 (E1), Right toe-off (E2), Right heel contact2 (E3), and Shuttlecock Impact (E4). Each hairpin net shot was broken into consecutive phases: E1~E2 (Right Landing Phase: RLP), E2~E3 (Sliding Step Phase: SSP), and E3~E4 (Impact Phase: IP). Temporal parameters, shuttlecock speed, linear and angular kinematics of body segments, and finger pressures were computed for this study. The results showed that The finger pressure of the ring finger and the middle finger for the skilled group during an impact had significantly greater than those of unskilled group. It is possible that all fingers were not used in the same manner when the racket was gripped in forehand hairpin. The result also suggested that the ring finger and the middle finger pushed the racket from top to bottom while having the mid-phalanx and proximal phalanx of index finger as an axis.

The Effect of Diminished Plantar Cutaneous Sensation in Y-balance Test between Chronic Ankle Instability (CAI) Patients versus Healthy Individuals (발바닥 체성 감각 저하에 따른 만성 발목 불안정성 환자군과 정상인 군의 Y-balance Test 능력에 미치는 효과)

  • Kim, Chang Young;Kang, Tae Kyu;Kim, Byong Hun;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Objective: This study aimed to investigate the effect of diminished plantar sensation in Y-balance test between chronic ankle instability (CAI) patients versus Healthy individuals. Method: A total of 90 subjects and CAI group (N=45) (age: $24.49{\pm}2.52yrs$, height: $173.53{\pm}8.20cm$, weight: $69.62{\pm}12.92kg$) and healthy group (N=45) (age: $24.85{\pm}2.70yrs$, height: $170.27{\pm}7.70cm$, weight: $66.04{\pm}11.60kg$) participated in this study. Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Y-Balance Test before and after a 10-minute of plantar cutaneous sensation application using ice ($2^{\circ}C$). Normalized reach distances were measured 3 times each direction. Results: We observed a decrease in reach-distance scores for the reach directions after diminished plantar cutaneous sensation in all reach directions (p<.01). Also, we observed a decrease in reach-distance scores for the PL, and PM reach directions between groups (p<.05). Conclusion: Our results indicated that dynamic postural control was adversely affected immediately after diminished plantar cutaneous sensation between CAI group and healthy group. Future research may suggest that determine the studies involving more realistic dynamic movement, such as walking or running, landing.

Kinematical analysis of Yurchenko Streched at Horse Vaulting (도마운동 유리첸코 몸 펴 공중돌기 동작의 운동학적 분석)

  • Yoon, Chang-Sun;Kim, Tae-Sam;Yoon, Hee-Joung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.67-79
    • /
    • 2003
  • The purpose of this study is to investigate the effective skill motion through the kinematic analysis of the Yurchenko Streched motion in new horse vaulting. The subjects in this study were 3 male gymnasts who were ranked as national athletes. After the 3D motion analysis, kinematic variables were analyzed to comparison with the difference between this study and the previous study(Yang, D. Y and Lee, C. S, 1999). As a result, the following conclusions was drawn; 1. In the board contact phase, this study showed a shorten contact time to maintain in condition highly extension of hip and hee angle than the previous study. 2. In the pre-flight phase, this study appeared more shortly flight duration time and horizontal flight displacement than the previous study. 3. In the horse contact phase, the contact duration time and horizontal displacement of COG shortened than the previous study, but appeared to the fast horizontal and vertical velocity and highly extension of shoulder an. 4. In the post-flight phase, a stable horse contact appeared to the increase of the flight duration time and the apex height during the post-flight. And it showed that these results have a stable and good landing.

An Analysis of Kinetic Variables That Affect High Jump Record of Students Who were Majoring in Physical Education (사범계 체육전공 대학생의 높이뛰기 기록에 영향을 미치는 운동역학적 변인 분석)

  • Cho, Jong-Hee;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.109-116
    • /
    • 2010
  • This study aims to comparatively analyze kinetic variables that affect high jump records and thus to provide the basic data for enhancement of physical education teachers' teaching skills and expertise. 10 students who were majoring in physical education in a college of education - five males and five females - were chosen for the experiment in which the 3D image analyzer and ground reaction force measuring unit were adopted. The kinetic variables of the groups, the characteristics and differences were analyzed, and the correlation between each variable and record in each group was examined. The results are as follows: As to the height of center of gravity from one step before stamping to landing, the vertical velocity of the center of gravity at take off, the vertical velocity of the limbs at take off, the angles of the hip joint and ankle joint of the jumping leg, it turned out that male were better than female. As to the angles of the hip joint and ankle joint of the lead leg, female recorded higher values than male. As to the maximum vertical ground reaction force, the maximum horizontal ground reaction force, the vertical impulse, it turned out that male were better than female.